
Consortium for Advanced 
Simulation of LWRs 

 

 

 
 
 

CASL-U-2015-0079-000 

Exnihilo User’s 
Manuals 

 
Release 5.3 (Dev) 

 
Thomas Evans 
Greg Davidson 
Steven Hamilton 
Seth Johnson 
Tara Pandya 
 
Oak Ridge National Laboratory 
 
February 19, 2015 

CASL-U-2015-0079-000



Exnihilo Documentation
Release 5.3 (Dev)

Seth Johnson Tom Evans Greg Davidson
Steven Hamilton Tara Pandya

February 19, 2015

CASL-U-2015-0079-000



CASL-U-2015-0079-000



CONTENTS

I Overview 1

1 Introduction 3
1.1 Package structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Development team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Exnihilo Quick Start Quide 5
2.1 Building the developer documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Assembling the source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Building the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Software Testing and Verification 7

II Developer Guide 9

4 Introduction 11

5 Configuration Management 13
5.1 Getting the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Compilers and platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Installation toolchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4 Third party libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Exnihilo Installation Guide 17
6.1 Installation environment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3 Build steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.4 The install.sh script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Workflows 25
7.1 Configuration workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 Design and implementation workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3 Deployment workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.4 Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8 Coding Standards 29
8.1 Organizing and writing code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.2 Use of language features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.3 Things to avoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.4 C++11 usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

i
CASL-U-2015-0079-000



9 Testing 39
9.1 C++ unit tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.2 Python unit tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

10 Development Environment 45
10.1 Setting up the Exnihilo development environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10.2 Command line tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.3 Text editor environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

11 Useful tools 49
11.1 Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
11.2 Git annex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
11.3 iPython notebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

III User Guide: Omnibus 57

12 Front End Interface 61
12.1 Running Omnibus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
12.2 Omnibus input and output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
12.3 Running Omnibus manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
12.4 Command line tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
12.5 Advanced execution through Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
12.6 Parameter list explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
12.7 Developer notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

13 Omnibus ASCII Input Format 71
13.1 Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
13.2 Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
13.3 Other features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

14 Omnibus Input Database Specification 73
14.1 Omnibus input file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
14.2 [PROBLEM] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
14.3 [RESPONSE] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
14.4 [RESPONSE=histogram] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
14.5 [RESPONSE=interpolated] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
14.6 [TALLY] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
14.7 [SOURCE] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
14.8 [SOURCE=separable] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
14.9 [SOURCE=fissionmesh] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
14.10 [SOURCE=mesh] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
14.11 [GEOMETRY] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
14.12 [GEOMETRY=mcnp] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
14.13 [GEOMETRY=scale] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
14.14 [GEOMETRY=rtk] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
14.15 [GEOMETRY=mesh] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
14.16 [COMP] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
14.17 [PHYSICS] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
14.18 [PHYSICS=mg] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
14.19 [PHYSICS=sce] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
14.20 [PHYSICS=smg] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
14.21 [DEPLETION] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
14.22 [SHIFT] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
14.23 [DENOVO] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

ii
CASL-U-2015-0079-000



14.24 [MANUALWW] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
14.25 [RUN] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
14.26 [RUN=serial] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
14.27 [RUN=mpi] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
14.28 [RUN=pbs] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

15 Postprocessing 131
15.1 Cylindrical tally postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

16 omnibus.converters package 133
16.1 omnibus.converters.mctal module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
16.2 omnibus.converters.meshtal module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
16.3 omnibus.converters.monaco module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
16.4 omnibus.converters.opus module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
16.5 omnibus.converters.triton module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
16.6 omnibus.converters.vesta module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
16.7 Module contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

17 omnibus.postprocess package 139
17.1 Submodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
17.2 omnibus.postprocess.celltally module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
17.3 omnibus.postprocess.collisions module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
17.4 omnibus.postprocess.compositions module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
17.5 omnibus.postprocess.cyltally module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
17.6 omnibus.postprocess.depletion module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
17.7 omnibus.postprocess.field module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
17.8 omnibus.postprocess.manager module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
17.9 omnibus.postprocess.meshtally module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
17.10 omnibus.postprocess.rst module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
17.11 omnibus.postprocess.sensitivity module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
17.12 omnibus.postprocess.tally module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
17.13 omnibus.postprocess.tally_plotter module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
17.14 omnibus.postprocess.utils module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
17.15 Module contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

IV User Guide: Insilico 163

18 Introduction 165

V Appendices 171

19 Shift Acceptance Test Descriptions 173
19.1 Leakage test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
19.2 Transmission tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
19.3 Material scaling test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

20 Denovo Acceptance Test Descriptions 175
20.1 Adjoint SN transport test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
20.2 Deterministic first-collision test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
20.3 Symmetry test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
20.4 Two-dimensional transport test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
20.5 AMPX plotting test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

iii
CASL-U-2015-0079-000



21 Style Guide 177
21.1 Code/Package/Library name capitalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
21.2 Commonly used abbreviations/acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
21.3 Commonly Used Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

22 License Information 181
22.1 Trilinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
22.2 Google Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

23 Acknowledgments 183
23.1 Copyright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Python Module Index 185

Index 187

iv
CASL-U-2015-0079-000



Part I

Overview

1
CASL-U-2015-0079-000



CASL-U-2015-0079-000



CHAPTER

ONE

INTRODUCTION

Exnihilo is a modern radiation transport framework that implements a variety of advanced solvers and solution method-
ologies, enabling it to solve a wide variety of nuclear engineering and applications problems with the scalability to run
on both desktop machines and leadership-class supercomputers.

It supports “stand-alone” execution using its internal front ends, but its components (such as the the Denovo 𝑆𝑁 solver)
are also integrated into other radiation transport codes.

1.1 Package structure

Exnihilo currently contains the following source code packages:

Nemesis: Infrastructure components This collection of utilities should be applicable to most scientific codes. In-
cluded are Design-by-Contract ™ utilities, communication libraries, containers and algorithms, HDF5 and Silo
interface wrappers, template-based serialization utilities, and the unit testing harness.

Transcore: Tranport core components These components are specific to radiation transport and multiphysics codes.
Included are cross section storage classes, libraries for reading and writing cross sections, quadrature sets,
Trilinos solver wrappers, Monte Carlo samplers, and Python interface wrappers.

Geometria: Geometry packages The geometries in this class are used for meshing deterministic problems, for trans-
porting Monte Carlo particles on, and for tallying. Geometries include mesh and cylindrical mesh, Reactor
ToolKit geometry, MCNP geometry using the Lava wrapper, SCALE geometry, and DagMC geometry.

Physica: Physics packages These are geometry-agnostic physics engines used for Monte Carlo transport. Currently
included are continuous-energy and multigroup physics packages.

Denovo: Deterministic transport solvers Denovo contains advanced transport solvers for fixed-source and eigen-
value problems, with discrete ordinates (𝑆𝑁 ) and simplified spherical harmonics (𝑆𝑃𝑁 ), using Cartesian grids
with the KBA decomposition.

Shift: Monte Carlo solver The Shift Monte Carlo framework is based on geometry- and physics-agnostic transport
routines. These routines include advanced parallel algorithms, flexible tallies, and extensible source definitions.

Insilico: Neutronics front end The Insilico front end couples Denovo and Shift with cross-section processing, deple-
tion, and thermo-hydraulics feedback for reactor analysis. This component is integrated into VERA, the Virtual
Environment of Reactor Applications.

Omnibus: General front end Omnibus is an ASCII-driven front end to Exnihilo for general applications.

1.2 Development team

The core Exnihilo development team consists of the following ORNL scientists (listed alphabetically):

3
CASL-U-2015-0079-000

http://www.casl.gov/VERA.shtml


Exnihilo Documentation, Release 5.3 (Dev)

• Greg Davidson <davidsongg@ornl.gov>

• Tom Evans <evanstm@ornl.gov>

• Steven Hamilton <hamiltonsr@ornl.gov>

• Seth Johnson <johnsonsr@ornl.gov>

• Tara Pandya <pandyatm@ornl.gov>

Additional developers that have contributed to the code base to varying degrees and are active associate developers of
Exnihilo are:

• Cihangir Celik <celikc@ornl.gov>

• Kevin Clarno <clarnokt@ornl.gov>

• Wayne Joubert <joubert@ornl.gov>

• Chris Perfetti <perfetticm@ornl.gov>

• Rachel Slaybaugh <slaybaugh@berkeley.edu>

Emeritus developers, who have moved on to other projects, include:

• Joshua Jarrell

• Brenden Mervin

• Stuart Slattery

General questions about Exnihilo software and methods should be directed to the email list.

4 Chapter 1. Introduction
CASL-U-2015-0079-000

mailto:davidsongg@ornl.gov
mailto:evanstm@ornl.gov
mailto:hamiltonsr@ornl.gov
mailto:johnsonsr@ornl.gov
mailto:pandyatm@ornl.gov
mailto:celikc@ornl.gov
mailto:clarnokt@ornl.gov
mailto:joubert@ornl.gov
mailto:perfetticm@ornl.gov
mailto:slaybaugh@berkeley.edu
mailto:denovo@email.ornl.gov


CHAPTER

TWO

EXNIHILO QUICK START QUIDE

2.1 Building the developer documentation

Documentation in Exnihilo comes in three forms:

METHODS Papers, reports, and notes that describe numerical methods, algorithms, and results. These documents
are prepared using the latex document system.

CODE MANUALS Manuals for code developers, the development environment, and users. This document falls into
this category. We use the Python Sphinx system to produce multiple document formats (PDF, HTML, text, etc)
from basic reStructured (rst) formatted markup.

CODE DOCUMENTATION Inline code documentation. This class of documentation is almost exclusively reserved
for code developers. It is processed using the Doxygen inline code documentation system from comments that
live within the source code.

Details on building METHODS and CODE DOCUMENTATION are found in Developer Guide. To build
the full developer documentation Python must be available with the Python Sphinx module installed. Enter
Exnihilo/doc/manual and run make:

$ make
Please use `make <target>' where <target> is one of

html to make standalone HTML files
dirhtml to make HTML files named index.html in directories
singlehtml to make a single large HTML file
pickle to make pickle files
json to make JSON files
htmlhelp to make HTML files and a HTML help project
qthelp to make HTML files and a qthelp project
devhelp to make HTML files and a Devhelp project
epub to make an epub
latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter
latexpdf to make LaTeX files and run them through pdflatex
text to make text files
man to make manual pages
texinfo to make Texinfo files
info to make Texinfo files and run them through makeinfo
gettext to make PO message catalogs
changes to make an overview of all changed/added/deprecated items
linkcheck to check all external links for integrity
doctest to run all doctests embedded in the documentation (if enabled)

Choose the desired format and run make <format>. The build result will be in _build/target.

5
CASL-U-2015-0079-000

http://www.latex-project.org
http://sphinx-doc.org
http://docutils.sourceforge.net
http://www.doxygen.org
http://www.python.org
http://sphinx-doc.org


Exnihilo Documentation, Release 5.3 (Dev)

2.2 Assembling the source code

Exnihilo integrates with the build system of three external code repositories: copies of Exnihilo, Trilinos, and TriBITS
must be located inside of the SCALE source directory in order to build:

$ cd /usr/local/src
$ ls SCALE
CMakeLists.txt ... Exnihilo TriBITS Trilinos ...

See Getting the code for details.

2.3 Building the code

After the necessary Third party libraries have been built and installed, Exnihilo can be built with CMake. The most
straightforward way to get started building Exnihilo is to use the scripts in Exnihilo/install that are described
in Configuration Management. The install.sh script described in The install.sh script is used to manage the build
process.

To build the base release of Exnihilo run the following:

./install.sh Exnihilo

To build only the Exnihilo components needed for ADVANTG, run:

./install.sh Exnihilo for-advantg

6 Chapter 2. Exnihilo Quick Start Quide
CASL-U-2015-0079-000



CHAPTER

THREE

SOFTWARE TESTING AND VERIFICATION

As described in Developer Guide, the software in Exnihilo is highly tested. Specifically, every class/component in the
code is required to have an individually compiled unit test verifying software correctness. This strategy has the side
benefit of creating simplified use cases for each class that can be used by novice code developers to learn the interface
and function of each class in the code.

Naturally, unit testing is only one aspect of a complete testing framework that demonstrates code verification and
validation (V&V). First, we define some terms that will establish the frame-of-reference for code activities.

Verification Given a well posed and defined problem, whether the code produces the correct solution within the
constraints imposed by the algorithm.

Validation Whether the model problem solved by the software matches experimental data or other accepted standards.

In essence, Verification determines that a given problem is being solved correctly; Validation determines that the
correct problem is being solved. Within the framework of these definitions, most testing in Exnihilo is focused on
Verification, not Validation. We can ensure that the code produces the correct output for a given set of inputs;
however, we cannot ensure that the methods are being applied appropriately to a given problem. That information
must, by definition, be performed for a given application.

For example, the Denovo package contains a simplified harmonics solver (𝑆𝑃𝑁 ). This method can have issues in void
and near-void regions. Thus, a user wishing to solve transport problems in an application space that includes voids
should probably consider using another method. However, the fact that 𝑆𝑃𝑁 is inappropriate, or unvalidated, for this
class of problems does not negate the fact that the Denovo 𝑆𝑃𝑁 solver is Verified, ie. the weakness of 𝑆𝑃𝑁 for this
class of problems lies with the method and model, not in the manner in which it is solved. In other words, the fitness
of a given model, in this case 𝑆𝑃𝑁 , to a given problem is determined by Validation.

In addition to unit tests, Exnihilo contains multiple acceptance tests that compare against reference solutions, either
analytical or from other validated codes. These are described in Shift Acceptance Test Descriptions and Denovo
Acceptance Test Descriptions.

7
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

8 Chapter 3. Software Testing and Verification
CASL-U-2015-0079-000



Part II

Developer Guide

9
CASL-U-2015-0079-000



CASL-U-2015-0079-000



CHAPTER

FOUR

INTRODUCTION

The developer’s guide lays out how to obtain Exnihilo, how to install it, and how to successfully develop for it.

1. Read Getting the code to learn how to access the repositories that contain Exnihilo and associated software.

2. Read the Exnihilo Installation Guide guide, installing any TPLs as necessary and then installing Exnihilo itself.

3. Install the Exnihilo Development Environment to set up the environment template and scripts.

4. Watch the Lego Movie and possibly some Sesame Street while everything installs.

5. Get to work!

11
CASL-U-2015-0079-000

http://www.youtube.com/watch?v=fZ_JOBCLF-I


Exnihilo Documentation, Release 5.3 (Dev)

12 Chapter 4. Introduction
CASL-U-2015-0079-000



CHAPTER

FIVE

CONFIGURATION MANAGEMENT

This section describes obtaining and configuring:

Exnihilo and build system Exnihilo must be built alongside SCALE reactor analysis criticality tools, Trilinos nu-
merical software, and TriBITS build tools.

TPLs The third-party toolchain and libraries listed in Third party libraries that are used to build, run, and test the
code.

Toolchain Software utilities that are used to build, edit, profile, document, and perform configuration management
activities.

We provide scripts for building and setting up the TPLs and Toolchain in scripts. See Configuration Management
for details on using these scripts. Instructions for additional Useful tools is available later.

5.1 Getting the code

Exnihilo uses the TriBITS build system, it also has a required dependency on Trilinos and SCALE, requiring all four
code systems to be downloaded and built at once. Note that while the existence of these systems is required, only the
requested parts of each code will be built.

Note: If building from the ADVANTG or SCALE distributions, all of these source packages are already available
and in the correct locations. You may skip to the next section.

5.1.1 Exnihilo

Configuration management in Exnihilo is managed using git. The source repository is stored on the ORNL machine
angband.ornl.gov:

git clone ssh://angband.ornl.gov/repos/git/Exnihilo.git Exnihilo

You will need to contact the Exnihilo Team to get access to the repository.

5.1.2 SCALE

It is also necessary to download SCALE to build Exnihilo. SCALE is managed using Mercurial and is cloned using:

hg clone https://fogbugz.ornl.gov/kiln/RepoAlias/scale/scale Scale

For access to the RNSD fogbugz server, contact Jordan Lefebvre. To clone from fogbugz, you might also need to add
the following to your ~/.hgrc

13
CASL-U-2015-0079-000

http://scale.ornl.gov
http://trilinos.org/download/
https://github.com/TriBITSPub/TriBITS
mailto:evanstm@ornl.gov
mailto:lefebvrejp@ornl.gov


Exnihilo Documentation, Release 5.3 (Dev)

[hostfingerprints]
fogbugz.ornl.gov = 39:81:1f:f4:82:5e:2a:64:7c:e2:6e:33:16:30:7d:be:43:e4:d3:3f

Note: If building for ADVANTG or Denovo solver development, it is possible to use a skeleton SCALE build
system in lieu of the SCALE download above. This small “SCALE” directory is distributed with ADVANTG and only
contains the essential CMake components of SCALE. (See make-skeleton-scale for details of the tool used to build it.)

SCALE data (necessary for running Insilico, Shift with CE, and other parts of the code) can be copied from the RNSD
servers over SCP. We provide an update-scale-data tool to simplify loading and updating the data.

5.1.3 Trilinos and TriBITS

Finally, Trilinos and the TriBITS build system can be cloned from the angband server if at ORNL:

git clone ssh://angband.ornl.gov/repos/mirror/Trilinos.git Trilinos
git clone ssh://angband.ornl.gov/repos/mirror/TriBITS.git TriBITS

If access to the ORNL server is unavailable, Trilinos and TriBITS can be downloaded or cloned from their respective
web sites.

5.1.4 Assembling the repositories

Exnihilo installation is set up with SCALE as the primary “source” directory; the Exnihilo, TriBITS, and Trilinos
directories must be moved or symbolically linked inside it:

cd Scale
ln -s ../TriBITS
ln -s ../Trilinos
ln -s ../Exnihilo

5.2 Compilers and platforms

Currently, Exnihilo is tested on Linux and Mac OS X systems using both Intel and GCC compilers. Intel 14.0 and
GCC 4.6 are the oldest supported versions due to the C++11 support requirement. A limited build of Exnihilo has
been tested on Windows, but Windows is currently only supported as far as is required to run SCALE. Exnihilo is also
compatible with Clang (i.e., the LLVM compiler on Apple systems), using gfortran to compile the Fortran code in
Trilinos, Exnihilo, and SCALE.

5.3 Installation toolchain

To configure, install, and run all the components of Exnihilo, several tools need to be installed.

Table 5.1: Exnihilo toolchain

Tool Required Comments
CMake Yes Build system used by TriBITS to generate Makefiles.
Python Not exactly Needed for some advanced software configuration, for Omnibus, and for

Python front end and tools.
SWIG No Needed for Python front end, with PCRE as a prerequisite TPL.

14 Chapter 5. Configuration Management
CASL-U-2015-0079-000

http://trilinos.org/download/
https://github.com/TriBITSPub/TriBITS
http://cmake.org/cmake/resources/software.html
http://www.python.org/getit/
http://sourceforge.net/projects/swig
http://sourceforge.net/projects/pcre


Exnihilo Documentation, Release 5.3 (Dev)

5.4 Third party libraries

Exnihilo makes use of several Third Party Libraries (TPLs). TPLs are distinct from toolchain components that are
used to build, debug, profile, and test the code (e.g. the GCC compiler and Python). Libraries provide features to the
compiled code. Examples include BLAS/LAPACK and HDF5. Some TPLs are provide both libraries and toolchain
components, e.g. MPI. The Exnihilo toolchain is described in Development Environment. The following table gives a
listing of the TPLS used by Exnihilo.

Table 5.2: Exnihilo TPLs

TPL Required Comments
MPI No OpenMPI and MPICH are suggested options. Vendor-provided options

will also work.
QT No This is required by Scale. Any Exnihilo dependencies that require Scale

will require QT.
BLAS/LAPACK Yes Use vendor-specific implementations when possible. The default imple-

mentations can be found at netlib.
HDF5 No Both serial and parallel HDF5 implementations are supported. When

building serial HDF5, parallel I/O using HDF5 is not available.
Silo No HDF5 is required when using Silo.
Lava No ORNL-developed interface library to MCNP services. Requires access

to the MCNP source. Contact the Exnihilo team for access.

In addition to the above TPLs, Exnihilo supports many TPLs that are supported by Trilinos (e.g. SuperLU) solvers.
See the Trilinos build manual for details.

Generic directions for building the TPLs are provided in Development Environment. Specific instructions for systems
that differ from the general instructions are provided in Exnihilo Installation Guide.

5.4.1 Python TPLs

The following Python package are also recommended:

Table 5.3: Exnihilo Python packages

TPL Required Comments
Numpy No Advanced Python numeric manupulation, used by Python tools and Om-

nibus postprocessing.
h5py No HDF5 reading and writing in Python.
pandas No Python Data Analysis Library, used in some Omnibus postprocessing.

5.4. Third party libraries 15
CASL-U-2015-0079-000

http://gcc.gnu.org/releases.html
http://www.python.org/getit/
http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/mpi
http://www.open-mpi.org/software/
http://www.mpich.org
http://qt-project.org
http://www.netlib.org
http://www.hdfgroup.org/ftp/HDF5/current/src/
https://wci.llnl.gov/codes/silo/
mailto:evanstm@ornl.gov
http://www.numpy.org
http://www.h5py.org
http://pandas.pydata.org


Exnihilo Documentation, Release 5.3 (Dev)

16 Chapter 5. Configuration Management
CASL-U-2015-0079-000



CHAPTER

SIX

EXNIHILO INSTALLATION GUIDE

This chapter documents a complete, from-scratch installation of Exnihilo. Most users will not need to read or un-
derstand this chapter, and even most developers (assuming they’re on a pre-configured server) will not most of this
reference. We provide detailed steps for most of the typical use cases.

6.1 Installation environment setup

Included in the Exnihilo/install directory is a set of build scripts developed to build Exnihilo, ADVANTG,
and related prerequisites on various Linux and Mac systems. As the number of permutations of systems and codes and
options has increased, the compilation scripts were restructured to allow for more flexibility. The file listing is:

codes cmake configurations and install scripts for relevant codes

rc environemnt settings for each platform/system (see Install environment description)

tools collection of scripts used for building and running regression tests

install.sh generic installer driver (see description and options below)

ctest-driver.sh testing/install driver for SCALE/Exnihilo

README.rst this readme file

setup_macports.sh recommended initial MacPorts installation script (see Build toolchain with MacPorts)

The recommended install process for a new system starts by setting up the installation environment for your machine:

cd Exnihilo/install/rc
cp -R $(uname) $(hostname -s)
cd $(hostname -s)
$EDITOR base.sh

Note: On my mac (Darwin system) with hostname sierrajuliet, the above simply evaluates to:

cp -R Darwin sierrajuliet
cd sierrajuliet
mvim base.sh

The scripts inside these files should be modified to reflect the base path for your source files, the path to SCALE,
MCNP, and/or ADVANTG data files, etc. For a description of their contents, see Install environment description.

17
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

6.2 Install

Depending on what system you’re using, and how customized you need your build, you have several options of what
TPLs and tools need to be installed. We give several typical use cases below.

6.2.1 Building with Macports GCC

This section applies to most of the Exnihilo users at ORNL, but it could also be adapted for users with advanced
package management systems.

1. Build toolchain with MacPorts to install GCC and the most of the TPLs.

2. Install Lava, the only TPL you must compile yourself, if using ADVANTG or Exnihilo with MCNP geometry
support:

cd Exnihilo/install
./install.sh lava

You can also install other TPLs such as MOAB for CAD geometry support:

./install.sh moab

3. Build Exnihilo from source

4. If using ADVANTG, you can now install it too:

./install.sh advantg

6.2.2 Building Exnihilo on Titan

The Titan system uses the module system to load package support. Several packages must be loaded (preferably in
your .bashrc) for TPLs and the GCC build chain to work:

module load gcc
module load git
module load mercurial
module load cmake3
module load python
module load cray-hdf5
module load cudatoolkit
module load python_numpy
module load python_h5py
module load python_matplotlib

The Titan system configure directory has variants for each project allocation. These can be used like:

./install -t nfi004 Exnihilo scale-debug

Note that to run unit tests and executables on Titan, it’s necessary to log in to a compute node and execute the process
using the aprun command.

6.2.3 Building the entire toolchain from scratch

If you’re on a brand-new system using outdated software (such as Red Hat, whose compilers are frozen at several
years behind the cutting edge for the sake of stability), it’s typical to install the entire toolchain manually.

18 Chapter 6. Exnihilo Installation Guide
CASL-U-2015-0079-000

https://www.olcf.ornl.gov/support/system-user-guides/titan-user-guide/


Exnihilo Documentation, Release 5.3 (Dev)

1. Build GCC from source to install the compilers.

2. Build tools from source for other configuration requirements.

3. Build BLAS/LAPACK from source if needed.

4. Build public TPLs from source for other Exnihilo requirements.

5. Install Lava and other feature-specific TPLs:

./install.sh lava

6. Build Exnihilo from source

7. If using ADVANTG, you can now install it too:

./install.sh advantg

6.3 Build steps

To install Exnihilo, it is often best to start building the compilers and third party libraries (TPLs) from scratch: the
Python front-end pykba, because it relies on shared libraries, requires that all the prerequisite libraries be compiled
with position-independent code (-fPIC option for GCC). This is most easily accomplished by building libraries as
shared to begin with.

Installation works best with a recent build of the GNU compiler collection (gcc). On a Mac system, this is most easily
accomplished using the MacPorts package distribution system. On old Linux systems (e.g. RHEL 4), it is best to
download the prerequisite GCC libraries, build them, build and install GCC, and then install the remaining packages.
Newer Linux systems (e.g. Ubuntu) often have up-to-date installations of GCC as well as package managers that can
ease the installation process.

6.3.1 Build GCC from source

If building GCC from scratch on a Linux box, download these libraries into your source base directory (e.g.
/usr/local/src):

• mpfr : GNU MPFR Library

• gmp : The GNU Multiple Precision Arithmetic Library

• mpc : The multiprecision library

• gcc : GNU compiler collection

To install GCC using the bootstrap.sh configuration you created:

./install.sh -t bootstrap gmp

./install.sh -t bootstrap mpfr

./install.sh -t bootstrap mpc

./install.sh -t bootstrap gcc

This builds a current version of GCC using whatever older version is available on the system.

6.3.2 Build tools from source

If a good package manager is unavailable on your system, you’ll have to download and install the CMake, SWIG, and
Python tools.

6.3. Build steps 19
CASL-U-2015-0079-000

http://www.mpfr.org/mpfr-current/
http://gmplib.org/
http://www.multiprecision.org/mpc/
http://gcc.gnu.org/releases.html


Exnihilo Documentation, Release 5.3 (Dev)

• cmake : CMake build system

• pcre : PCRE - Perl Compatible Regular Expressions

• swig : Simplified Wrapper and Interface Generator (SWIG)

• python : Python 2

After downloading, you can install these simply with:

./install.sh cmake

./install.sh pcre

./install.sh swig

./install.sh python

6.3.3 Build BLAS/LAPACK from source

Most systems include a compiled linear algebra library. (On Titan, these are embedded in the Cray scientific libraries;
on a Mac and most Linux systems, they’re located in /usr/lib.) If your machine does not, or you wish to have an
autotuned library for your specific machine, you’ll need to install:

• atlas : Automatically Tuned Linear Algebra Software (ATLAS)

• lapack : LAPACK linear algebra library

Place the compressed LAPACK source .tgz alongside the ATLAS source in your source directory, and execute:

./install.sh ATLAS

This will install ATLAS BLAS functions and supplement them with the LAPACK routines.

6.3.4 Build public TPLs from source

Several third party libraries (see Third party libraries) are necessary or recommended to build and run Exnihilo. These
can be downloaded with the following links:

• openmpi : OpenMPI

• hdf5 : HDF5 scientific format library

• silo: Silo data output library

• numpy : numeric python library (optional but strongly recommended)

If installing with SCALE enabled (not needed for ADVANTG), QT is required:

• qt: large application and UI framework

To install these, simply execute:

./install.sh openmpi

./install.sh hdf5

./install.sh silo

./install.sh numpy

6.3.5 Build toolchain with MacPorts

MacPorts allows almost the entire toolchain to be downloaded and built on a Mac. You must first download the
MacPorts disk image and run the included installer to get MacPorts (a package manager for the Mac platform).

20 Chapter 6. Exnihilo Installation Guide
CASL-U-2015-0079-000

http://cmake.org/cmake/resources/software.html
http://sourceforge.net/projects/pcre/
http://sourceforge.net/projects/swig
http://www.python.org/getit/
http://sourceforge.net/projects/math-atlas/files/Stable/
http://www.netlib.org/lapack/
http://www.open-mpi.org/software/
http://www.hdfgroup.org/ftp/HDF5/current/src/
https://wci.llnl.gov/codes/silo/
https://github.com/numpy/numpy/zipball/master
http://download.qt.io/archive/qt/4.8/
http://www.macports.org/install.php


Exnihilo Documentation, Release 5.3 (Dev)

To install a recent version of GCC and most of the required TPLs and tools, we have provided a script:

sudo xcodebuild -license
sudo ./setup_macports

You may want to modify/trim the list of ports in that script: it installs the Macports X11 and several other components
that may be redundant for your system configuration. It also installs iPython notebook and other tools.

6.3.6 Build Exnihilo from source

The Exnihilo source requires three different repositories (SCALE, TriBITS, Trilinos) to build: Exnihilo, TriBITS, and
Trilinos must be symlinked or moved inside the SCALE base directory. See Getting the code for detailed directions
on obtaining and assembling these source codes.

Once the source is in place in your source directory, Exnihilo can be installed:

./install.sh Exnihilo {variant}

Here, [variant] is the specific set of cmake options passed to the configure. h{are:

• empty, for a typical server installation meant for users of Shift or Denovo;

• scale-debug, for development with SCALE support;

• for-advantg, if installing just for use in ADVANTG;

etc. (See the install/codes/Exnihilo/*.cmake and other cmake files in its subdirectories.)

6.3.7 Building Exnihilo from an ADVANTG distribution

The ADVANTG source distribution includes:

• a copy of the current ADVANTG source,

• a copy of the current Exnihilo source,

• a copy of the current Lava library source, and

• a skeleton copy of the SCALE build system.

It is also necessary to download the Trilinos and TriBITS source code in the same directory as these sources.

The Scale directory contains the build system infrastructure but none of the SCALE components. It has the required
symlinks to ../Trilinos, ../TriBITS, and ../Exnihilo.

Now you can install Exnihilo using the for-advantg variant located at
Exnihilo/scripts/codes/Exnihilo/for-advantg.cmake:

./install.sh Exnihilo for-advantg

Tip: If the above installation fails for some reason, you can either modify the for-advantg.cmake script your-
self, copy it to a new variant, etc. In these scripts, all CMake options must be set using the CACHE option to propagate
the variables to CMake.

Once Exnihilo is installed, ADVANTG can be installed:

./install.sh advantg

6.3. Build steps 21
CASL-U-2015-0079-000

http://trilinos.org/download/
https://github.com/TriBITSPub/TriBITS


Exnihilo Documentation, Release 5.3 (Dev)

and this completes the build process. See the The install.sh script section for details on the installer script.

For any of these steps, you of course have the option of manually creating a CMake “configure” script and running in
your own build directories. Note, however, that building Exnihilo is done inside the SCALE build system, so SCALE
needs to be set as the “source” directory in order to build Exnihilo.

6.4 The install.sh script

This script automates the process of “sourcing” an rc file for a particular system, setting up installation direc-
tories, and running cmake/build/install. It will execute a combination of system (with optional “system vari-
ant”) and code (with optional “code variant”). By default it will look for rc/$(hostname), or if unavail-
able rc/$(uname). It looks for install scripts or CMake configurations inside the codes directory, first under
codes/${code}/$(hostname) and next under codes/${code}. The ability to find options under a host-
name allows individual build configurations for each user of a code.

6.4.1 Install environment description

Inside the config.sh files are a number of environennt variables used by the scripts and installers that determine
the installer paths, compilers, etc.

source_base This should be the root directory in which all the source directories are stored. For example, on
most systems I use /usr/local/src. Inside the src directory I have Exnihilo, openmpi-x.x.x,
hdf5-x.x.x, etc.

prefix_base This is the default parent directory of all the installed TPLs and Exnihilo. For example,
if your prefix is set to /usr/local/denovo, you’ll end up with .../local/denovo/openmpi,
.../local/denovo/Exnihilo, etc.

build_base This is the parent directory for the temporary builds. These files don’t need to be retained after
Exnihilo is installed, so it’s often a good idea to set a directory in /tmp as the build root, because disk access
speeds are often much faster (being on a local drive rather than a network mount for some clusters).

CC, CXX, F90 These are the default compilers.

mcnp_src Currently, Lava uses this directory to build. Its immediate contents should be all the .f90 source files
used by MCNP5.

mcnp_exe This is the actual MCP executable, used for generating runtpe files.

anisn_path This is the data path to the ANISN-formatted files used by ADVANTG. It’s not necessary if SCALE
is all that’s being installed.

scale_data_path This is the path to the SCALE data directory.

6.4.2 Example of using install.sh

Example on host sierrajuliet:

install.sh lava

will source rc/sierrajuliet/base.sh, which is a symbolic link to the Darwin/macports.sh resource. It
will then build from the /usr/local/src/lava directory (the source base directory is specified in the RC file),
create a build directory, and run cmake using the options specified in codes/lava/base.cmake. It will then start
building and try to install.

Another example of installing a “code variant” (e.g. a custom debug build):

22 Chapter 6. Exnihilo Installation Guide
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

install.sh -t dev Exnihilo shift-release

will source rc/MACHINE/dev.sh rather than rc/MACHINE/base.sh; it will then run CMake based on
codes/Exnihilo/shift-release.cmake.

There are also command line options for explicitly specifying the source, build, and install directories.

If you want to create custom source/install paths for your particular machine, simply create an rc/HOSTNAME direc-
tory and add scripts to it.

If the software package you’re installing does not support CMake, you can create an install_CODE.sh file inside
codes.

Tip: Unique builds can be specified by adding a machine variant. An example is the variant for machine mirkwood.
Looking in the rc/mirkwood directory we see the system variant debug. To do a debug build on mirkwood in
/home/me/build and install in /home/me/debug from source in /home/me/Exnihilo:

./install.sh -p /home/me/debug -b /home/me/build \
-c /home/me/Exnihilo -t debug Exnihilo

Note: It is not necessary to specify the system unless you want to override the default. For example, you could use
the mirkwood variant on another Mac OS X system by running:

./install.sh -p /home/me/debug -b /home/me/build \
-c /home/me/Exnihilo -s mirkwood -t debug Exnihilo

This will use the Exnihilo base options with overrides defined in rc/mirkwood/debug.cmake.

6.4.3 Power user explanation

Having a script that initializes a CMake build to create a Makefile to build a piece of software is necessarily confusing.
The install.sh script is at its essence the following script:

scripts_dir=$(pwd)
source rc/Darwin/macports.sh
export prefix_dir=${prefix_base}/Exnihilo
cd ${build_base}/Exnihilo
cmake -C ${scripts_dir}/codes/Exnihilo/base.sh \

${source_base}/Exnihilo

Instead of using the -C option to read the CMake configure file, you may define options on the command line:

cmake \
-D Exnihilo_DISABLE_SCALE:BOOL=ON \
-D SCALE_ENABLE_GeometriaLava:BOOL=ON \
-D SCALE_ENABLE_DenovoPyKBA:BOOL=ON \
-D SCALE_ENABLE_DenovoPySPN:BOOL=ON \
-D CMAKE_BUILD_TYPE:STRING="Release" \
-D ENABLE_PYTHON_WRAPPERS:BOOL=ON \
-D ENABLE_DOCUMENTATION:BOOL=ON \
-D SCALE_ENABLE_SWIG_EXCEPTIONS:BOOL=ON \
-D PyKBA_ENABLE_ALL_EQUATIONS:BOOL=ON \
-D SCALE_ENABLE_ALL_FORWARD_DEP_PACKAGES:BOOL=OFF \
-D SCALE_ENABLE_ALL_OPTIONAL_PACKAGES:BOOL=ON \
-D SCALE_ENABLE_SECONDARY_TESTED_CODE:BOOL=ON \
-D BUILD_SHARED_LIBS:BOOL=ON \
-D SCALE_ENABLE_CXX11:BOOL=ON \

6.4. The install.sh script 23
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

-D CMAKE_INSTALL_PREFIX:PATH="/usr/local/exnihilo" \
Exnihilo

6.4.4 Command line options

-c dir
Manually specify the source directory name.

-b dir
Manually specify the build directory name.

-p dir
Manually specify the install directory (i.e. prefix) name.

-s sysname
Override the system name to load a custom RC file and cmake script.

-t variant
Specify a system variant, loading rc/${sys}/${variant}.sh as the resource file.

-m
Reuse make file if possible.

-n
Do not build or install. This option only generates the cmake configuration.

-u
Use the ctest driver to upload and run unit tests. This option is only valid when building Exnihilo or SCALE.

24 Chapter 6. Exnihilo Installation Guide
CASL-U-2015-0079-000



CHAPTER

SEVEN

WORKFLOWS

7.1 Configuration workflows

Exnihilo uses git for configuration management. Feature development is performed on topic branches. After review
branches are merged into the master versions. We follow the basic tenets described in the cmake-git workflow strategy.
In short, make a local tracking branch in your repo that diverges from the master branch:

$ git branch

* master
$ git checkout -b my-branch

Do your work and only merge back to the master when all unit tests pass. Feel free to commit often on the topic
branch (including broken code). The objective is to only merge correct code back to the master. (Code on branches
in a developmental state is allowed to be temporarily broken.)

Once the topic branch is completed, and all unit tests pass, do a quick code review with an Exnihilo team member. To
merge the topic branch into the master, do the following:

$ git checkout master
$ git pull
$ git merge --no-commit my-branch

For details and recommendations on merging and conflict resolution, it is highly recommended that the Merging and
conflict resolution section be consulted.

Upon successfully completing the merge, you can push to the origin:

$ git push origin

Using this basic workflow will create a clean repository in which commits are descriptively labeled, and it will be easy
to walk backwards through the history:

...o ...o
\ \

...o----o----o----o----o master
/ /

...o ...o

7.2 Design and implementation workflows

7.2.1 Design workflow

Exnihilo software design and implementation is performed using a 3-step process:

25
CASL-U-2015-0079-000

http://www.cmake.org/Wiki/Git/Workflow/Topic


Exnihilo Documentation, Release 5.3 (Dev)

1. Documentation of numerical methods and/or algorithms to be implemented in a RNSD Technical Note:

nemesis-note -b title

this will generate a LaTeX technical note template.

2. Design model sketching using either UML or descriptive text; these are not formally archived.

3. Implementation with inline documentation using doxygen, which serves as a formal documentation of the de-
sign.

This process is highly agile and iterative. In some cases, steps 1 & 2 may be highly contracted or skipped altogether
depending on the task. Step 3 can be highly iterative; thus we have found repeated updating of preliminary design
sketching to be very disruptive. Informal reviews are performed after each step (see Reviews for details on reviews).
Depending upon the impact/scope of the implementation, a formal review may be performed at the conclusion of the
activity. The documented code is the ultimate, persistent design. All code should be self-documenting according to
the coding standards described in Coding Standards.

7.2.2 Development workflows

Exnihilo is developed using an agile configure/edit/build/test cycle, often using paired-programming techniques. The
TriBITS (Trilinos Build System) cmake extensions are used to control code builds, testing, and deployment. A standard
development workflow is:

1. Create topic branch

2. Configure the code using cmake

3. Edit the code (perhaps as part of pair-programming or multi-programming) and corresponding unit tests

4. Build code and tests

5. Run tests Repeat until full feature is implemented

6. Review topic branch

7. Merge topic branch onto master

8. Full build + downstream tests

9. Push to server

7.3 Deployment workflow

Exnihilo is developed using a test-driven, continuous-integration process. Thus, each version of master can be suc-
cessfully deployed as a release because it successfully runs all unit and acceptance tests.

7.4 Reviews

The decision upon whether to perform a formal or informal review is up to the Exnihilo team. Generally, factors
such as complexity, importance, and difficulty determine whether a formal or informal review needs to be performed.
The objective of reviews is to identify issues as close to implementation as possible; this dramatically reduces defect
resolution times and minimizes adverse impacts across the project. The majority of reviews in Exnihilo are informal.

26 Chapter 7. Workflows
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

7.4.1 Formal reviews

Formal reviews are conducted by a review panel. The size, scope, and members of the panel are determined by the
item being reviewed. The following table gives recommended numbers and team composition for different types of
reviews.

Reviewed Item Panel Size Team Composition
Code walk-through 1–2 team members only
Code review 2–3 may include an external member
Design review 2–3 should include an external member
Requirements review 2–3 should include an external member, preferably a project

stakeholder
Methods review 2–3 should include an appropriate subject matter expert
User and developer manuals 2–3 should include an external member, preferably a user

This is not an exhaustive list as many activities outside of these areas may require review. Use this information as a
guide for such activities.

The requirements for formal review are:

• review minutes should be documented using iPython Notebook and archived in the Exnihilo documents repos-
itory (ssh://angband/repos/git/documents.git) under reviews.

• reviews must be moderated and have a time-limit

• issues should be discussed, not solutions

Review minute documentation need not be exhaustive or comprehensive. Important issues and outstanding action
items should be noted.

7.4.2 Informal reviews

Informal reviews take nearly any form. The most effective format is a walk-through. This type of review has the
creator of an artifact review the item with another person. The other person is usually a team member. No formal
documentation or archiving is required for informal reviews.

7.4. Reviews 27
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

28 Chapter 7. Workflows
CASL-U-2015-0079-000



CHAPTER

EIGHT

CODING STANDARDS

This chapter gives the coding standards used in Exnihilo. Most of the software in Exnihilo is be written in C++. The
power of C++ can be abused easily, resulting in code that is difficult to understand and maintain. This document gives
the practices that must be followed on the Exnihilo project for all new code that is written. The intent is not to be
onerous but to ensure that the code is solid and maintainable. As of June 1, 2014, the Exnihilo code base will be
integrating C++11 constructs into the code base. Accepted C++11 practices are described in C++11 Usage.

External libraries that Exnihilo uses do not have to meet these requirements, although we encourage external devel-
opers to follow these practices. For any code that Exnihilo takes ownership, the project will decide on a case-by-case
basis on any changes.

8.1 Organizing and writing code

This section deals mainly with how code should be organized and written in terms of files, file names, code formatting,
and documentation.

8.1.1 File names

Each class is defined within its own set of files, as summarized in the following table:

Table 8.1: Exnihilo TPLs

File Description
A.hh Header file. Contains definition of class A. It may also contain member function defini-

tions, although preferably, function definitions should be in one or more of the files A.cc,
A.i.hh, and A.t.hh.

A.cc Implementation file. If A is non-templated, then contains non-templated member function
definitions of A. If A is templated, contains member function definitions of specializations
of A.

A.t.hh Template implementation file. May be used if A is a templated class, or if A contains tem-
plated member functions. In these cases, contains the corresponding function definitions
which will be explicitly instantiated by A.t.cc.

A.i.hh Implementation file for member functions. This file should always be included at the bot-
tom of A.hh. If A is templated, or has templated member functions, then this file can be
used for an automatic instantiation model. For non-templated entities, this file may contain
inline function definitions.

A.pt.cc Instantiation file. Used for explicit template instantiation of the definitions in A.t.hh. For
specific template arguments, contains instantiations of A or its templated member functions.

test/tstA.cc Unit test file. The unit test for A. Other files may also be used by the unit test.

Note: Multiple classes should not be defined in a single set of files, except in very special circumstances where the

29
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

classes are closely related (for example, nested classes, or an iterator class for a container).

8.1.2 Generating files

The Exnihilo Development Environment installs a template-gen tool that creates templates for various file types.
To generate files for a new templated class called Foo, you might do the following:

$ template-gen Foo.{hh,t.hh}
>>> Sucessfully created Foo.hh
>>> Sucessfully created Foo.t.hh
$ template-gen test/tstFoo.cc
>>> Sucessfully created test/tstFoo.cc

This will create the class header, the template definition file, and a unit test template.

8.1.3 Template model

In Exnihilo, there are two models that are used for template instantiation, based on usage:

Automatic This is for templated classes for which it is unlikely that the template arguments are known beforehand.
Examples are containers and smart pointers (which can contain or point to any data type). These classes include
their function definitions within their header file (*.hh, either explicitly or via a *.i.hh file. Hopefully, to
avoid code bloat and excessive compile times, these classes are small.

Explicit This is for templated classes for which the range of template arguments is known. An example is a finite-
volume class that is templated on the mesh type (the number of mesh types one typically requires is known and
fairly small). Here, the function definitions (*.t.hh) are included by the template instantiation file (*.t.cc).
The instantiation file instantiates the class for each template argument that is desired.

Note that the STL follows the automatic instantiation model.

8.1.4 Write unit tests

The author of a class must write a unit test for that class. The unit test not only tests the functionality of the class, but
also helps serve as an example for how to use the class. Some authors actually prefer to write the test before the class.
See File Names for where the unit test should reside.

8.1.5 Syntax names and code formatting

Rules for names and code formatting can be onerous. We believe many such rules are based more on personal pref-
erence and do not significantly add value to a code’s readability. If too many rules are specified, teams tend to ignore
all the rules, or become unhappy with enforcement. The intent here is to have code that is quickly understandable by
anyone on the Exnihilo team. But individual team members may not find each other’s style “pretty.”

Hint: With regards to code style, the most important thing is to be neat and consistent. Your code will be read by
other team members, so readability is important. Code that is sloppy will not be accepted into the head version of the
code. Try to follow existing source code conventions when possible.

Important: The most important stylistic guideline imposed by the Exnihilo code team (without exception) is an 80
column limit on statement lines. Please limit all code statements to no more than 80 columns.

30 Chapter 8. Coding Standards
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Consequently, we have narrowed down the list of rules to those we believe are the most important (in addition to the
inviolate 80 column limit mentioned above):

1. Indent your code as follows:

• Do not indent curly braces relative to their control statements.

• Do not indent namespace blocks.

• Indent public, private, protected statements two spaces relative to their class’ braces.

• For other code blocks, indent four spaces relative to their enclosing braces.

• Comments on their own line should be indented to the same level as the code they are commenting.

2. Be consistent in spacing, bracket placement, formatting, etc. If modifying someone else’s code, respect and
attempt to follow their style (otherwise, you are introducing inconsistency).

3. Separate words and acronyms within a name with an underscore (if you must use CamelCase, be consistent
throughtout the class/scope).

4. Prefer complete words or acronyms in names. For example, use is_anal_retentive instead of
is_anl_ret.

5. Distinguish variable and function names from user-defined type names as follows: Begin all words in type
names with a capital letter. Begin all words in variable and function names with a lowercase letter.

6. One should not have to search outside of a file, or parse an entire function definition, to determine the origin of
a name used within that file (ideally, apply this down to function definitions). This rule implies the following:

• Use d_ for members of a class. Use b_ for members of a base class. Define the private typename Base
in a derived class as a reference for the Base class, ie:

class A
{

public:
A(int a, int b);

private:
// Base class members that do something important (notice that
// these members are commented?).
int b_a, b_b;

};

class B : public A
{

typedef A Base;
public:

explicit B(int x);

private:
// This is an important datum.
int d_important_datum;

};

This allows constructors and virtual functions to clearly and easily reference the parent class:

B::B(int x)
: Base(x + 1, x + 2)
, d_important_datum(x)

{

8.1. Organizing and writing code 31
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

/* * */
}

• Even within an implementation file, avoid using namespace. One exception here is using
namespace std, as long as you are using very common stuff from std (cout, endl, vector,...). It
is still preferable that you explicitly specify which names you’re using (e.g., using std::cout).

7. Limit the body of a function definition to approximately one page in length.

8. Declare only one variable per line, including within function definitions:

void blorp(int i,
int j)

{
// preparing to blorp
// ...

}

9. In general, do only one operation per line. For example, avoid:

a = b = c = d = 0;

however, this is acceptable:

int a = 0, b = 0, c = 0, d = 0;

8.1.6 Code comments and documentation

Code must be reasonably commented and documented using Doxygen. The Exnihilo templates provide code-blocks
for Doxygen comments. Also, the Exnihilo development environment provides emacs and vim define macros and
menus for documenting the code as described in Development Environment. Our preference is to put one-line com-
ments for each member function in the header file and its documentation in the implementation file.

8.2 Use of language features

This section gives rules on language features to use and to avoid. Items specifically related to C++11 can be found in
C++11 Usage.

8.2.1 Use namespaces

All code should be contained within a namespace. The name of the namespace is generally (with exceptions) taken
from the package containing the code; although, it is acceptable to use subpackage namespaces when these make
logical design sense.

8.2.2 Enforce const-correctness

When declaring a variable or function, use the const qualifier whenever possible. If unsure when declaring the
variable, then go ahead and add the const qualifier. You can always remove the qualifier later. We discourage
strongly the practice of adding const-correctness after major features have been implemented.

Denovo may have to use external libraries that do not enforce const-correctness. Such libraries must be wrapped in
the equivalent functionality that enforces const-correctness. Otherwise, if wrapping is not done, the external library

32 Chapter 8. Coding Standards
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

potentially could force all of Denovo to abandon const-correctness. Wrapping has other benefits, such as that the
external library can be swapped out.

8.2.3 Design-by-Contract (TM)

The Design-by-Contract (DBC) macros defined in are defined in harness/DBC.hh. The following examples shows
how DBC can be used:

#include "harness/DBC.hh" // defines Require, Check, Ensure, ...

double pressure(double temperature,
double density)

{
Require (temperature >= 0.0); // use Require() to check input values
Require (density >= 0.0);

double p; // pressure that is returned

// ... code that computes initial guess for p ...

Check (p >= 0.0); // use Check() for intermediate calculations

// ... code that computes final value of p ...

Ensure (p >= 0.0); // use Ensure() for final values

return p;
}

8.2.4 Data Hiding

Aside from pure data structures (i.e., a struct), class member data should be accessed only through member func-
tions. There are several suggestions for accessors. Consider the following example with accessors to large data
structures; presumably, the CCF class contains a large amount of data. Care must be taken that Solution is not
destroyed while handles it has returned are still available.:

class Solution
{

// >>> DATA

typedef std::vector<double> CCF; // cell-centered field
CCF d_pressure;
CCF d_density;

public:

// >>> ACCESSORS

CCF &pressure() { return d_pressure; }
const CCF &pressure() const { return d_pressure; }

CCF &density() { return d_density; }
const CCF &density() const { return d_density; }

// >>> ITERATORS

8.2. Use of language features 33
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

CCF::iterator begin_pressure() { return d_pressure.begin() }
CCF::iterator end_pressure() { return d_pressure.end() }

// ... etc ...
};

A memory-safe solution is the use the RCF (Reference Counted Field) class; however, this is may not be optimal for
all use cases,:

#include "utils/RCF.hh"
class Solution
{

// >>> DATA

typedef denovo::RCF< std::vector<double> > CCF; // cell-centered field
CCF d_pressure;
CCF d_density;

public:

// >>> ACCESSORS

CCF pressure() { return d_pressure; }

CCF density() { return d_density; }

// >>> ITERATORS

CCF::iterator begin_pressure() { return d_pressure.begin() }
CCF::iterator end_pressure() { return d_pressure.end() }

// ... etc ...
};

The data pointed to by any RCF will not go out of scope until the last one is destroyed. Also, copies are cheap because
only the underlying reference is copies, not the data itself. Of course, this allows any owners of these fields to modify
the underlying fields.

With regards to data hiding, optimization, ease of use, and safety must dictate design. These constraints are often
conflicting. The following guidelines are helpful to keep in mind:

• If the class is a data container (for example, a container of cell-centered fluxes on a mesh), then data container
semantics may be used to access the underlying data. These semantics include operator[], operator(),
and iterator access.

• If the member data is a large data structure, then for efficiency, handles to that data may be returned. The handles
may be in the form of iterators or references, as in the first example above.

• Otherwise, get/set semantics should be used. The @code{get} function should not return a non-const handle to
the data.

8.2.5 The std namespace

For example, use #include <cmath> instead of #include <math.h>. In general, do not use the .h system
header files, which pollutes the global namespace. The resulting code will have the following constructions:

#include <cmath>
#include <iostream>

34 Chapter 8. Coding Standards
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

// ... stuff
x = std::sqrt(y);
std::cout << x << std::endl;

8.2.6 using statements

Do not place using statements where they might pollute the global namespace. Unless within the scope of an
inline function, using statements should not be placed within header files (*.hh). Even within implementation
files, preferably using statements should appear only within function scope.

Consider a A.hh file that contains the following:

#include <iostream>

namespace using_abuse
{

using namespace std; // Not here!!!

class A
{

public:
void print_something() { cout << "I am lazy.\n"; }

};

} // end of namespace using_abuse

Now, consider a translation unit that uses A.hh:

#include "A.hh"

int main()
{

// The following using statement is OK, because it's in an implementation
// file. Unforunately, it asks for using_abuse, but got std too!!!
using namespace using_abuse;

A a; // using_abuse::A is OK too
a.print_something();

cout << "Where did cout come from???\n"; // Answer: via using_abuse.
}

You might argue that namespace using_abuse is “yours,” and you’re free to pollute it all you like. However,
someone else might have to maintain your code in the future. Also, placing using statements with header files may
affect those who want to use your class, as illustrated above.

8.3 Things to avoid

The following is a list of things to avoid. It is not comprehensive, and like everything, there are times when “rules”
need to be broken.

8.3. Things to avoid 35
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

8.3.1 Circular dependencies

Circular depencies arise from two-way associations. Denovo subscribes to the principles of levelized design (some-
times referred to as acyclic design). This is critical to the unit-testing and continuous-integration lifecycle models in
Exnihilo. Thus, circular dependencies are not allowed. Additionally, there is never a reason to use circular dependen-
cies (an association class can be used to decouple two-way associations). A simple example of a circular dependency
is shown below:

class B; // forward declaration

class A
{

int do_b(const B &b); // refers to class B
};

class B
{

int do_a(const A &a); // refers to class A
};

Because both classes A and B refer to one another, they cannot be tested independently. Circular dependencies also
create build-system nightmares.

8.3.2 Friendship

There are specialized cases where friend is useful (such as an iterator class for a container class), but generally, the
use of friend is strongly discouraged. The use of friend violates data hiding, which was covered in the previous
section. Remember, “in C++ friendship, much as in life, is often more trouble than its worth.”

8.3.3 Macro functions

Macro functions are not type-safe and should generally be avoided. This is not to imply that macros should never by
used. We use them for our DBC implementation and conditional compiling. Simply be judicious when using macros.

8.3.4 Raw pointers

The use of raw pointers (for example, double *x) can be a major source of bugs. Often, the use of raw pointers can
be avoided by substituting one of following techniques:

• Use a shared pointer instead (either std::shared_ptr or std::unique_ptr).

• Use a reference.

There are situations where using a raw pointer cannot be avoided. For example, raw pointers cannot be avoided when
communicating with other languages, such as Fortran or C. In other cases, their use should be encapsulated. For
example, container classes often use a pointer for their underlying data storage and may define its iterator type
as pointer via a typedef. However, the pointer implementation in this case is encapsulated from the user of the
container class. It is very important to avoid the following constructs:

class Foo_Factory
{

private:
Foo *d_foo;

public:

36 Chapter 8. Coding Standards
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

void build()
{

// build foo
d_foo = new Foo();
// ...

}

Foo* get_Foo() const { return d_foo; }
};

The issue is, “who ultimately deletes the Foo here?”. By returning a SP<Foo> this question is null. The last remaining
owner will delete the Foo.

Finally, pointers-to-functions are a relic of C and can be avoided through the use of virtual functions.

8.4 C++11 usage

C++11 has many useful features; however, in Exnihilo we recommend a subset of features to use. The best place to
discover the accepted use-patterns of C++11 features is to peruse the examples in Nemesis/cxx11. One thing to
be wary of is that many compilers outside of gcc do not have good support for many C++11 features. And, gcc before
4.7.1 has some limitations as well. The following is a basic list of C++11 best practices:

• Keep the auto keyword usage local (ie. at function-scope). Avoid using auto in argument lists.

• Use nullptr to initialize raw pointers, when raw pointers are absolutely necessary.

• Use unordered_map and other new standard library containers; however, beware that the emplace is not
supported by several compilers (see tstCXX11_Std.cc).

Note on Smart Pointers We will be making the conversion from native Exnihilo smart pointers (SP class) to the
new C++11 standard smart pointer, shared_ptr. This is a transition, and shared_ptr should be avoided
except inside of local class/scope internals at this point.

• Respect the Rule of 5 (formerly known as the Rule of 3).

8.4. C++11 usage 37
CASL-U-2015-0079-000

http://en.wikipedia.org/wiki/Rule_of_three_(C%2B%2B_programming)


Exnihilo Documentation, Release 5.3 (Dev)

38 Chapter 8. Coding Standards
CASL-U-2015-0079-000



CHAPTER

NINE

TESTING

Exnihilo contains two primary types of unit tests based on the two coding languages used.

9.1 C++ unit tests

Exnihilo uses the Google Test framework for most of its unit tests. (Some tests in the repository use an obsolete test
harness.)

9.1.1 Creating a unit test

The Nemesis environment (Development Environment) installs a handy script for generating a template for new tests
inside a test directory:

$ template-gen -n shift tstBlah.cc
Successfully created tstBlah.cc

Here, the -n option is followed by the namespace. This creates a new google test file. If you don’t have the environ-
ment scripts installed, simply create a new .cc file with the following line among the includes:

#include "Nemesis/gtest/nemesis_gtest.hh"

This includes the Google Test header file, declares additional Nemesis macros, and injects the custom main() func-
tion needed to run all the tests.

9.1.2 Adding the test

To build and automatically run the test, you will need to modify the CMakeLists.txt file inside the test directory.
This file must include the following setup line:

INCLUDE(NemesisTest)

To build and run the test, add the simple macro directive:

ADD_NEMESIS_TEST(tstBlah.cc NP 1 2)

The NP 1 2 option indicates the number of processors to allow to run the test. The full list of options (including set-
ting environmental variables, linking in libraries, adjusting the timeout, and suppressing the running of the test through
CTest) can be viewed inside the Exnihilo/packages/Nemesis/cmake/NemesisTest.cmake file.

39
CASL-U-2015-0079-000

https://code.google.com/p/googletest/


Exnihilo Documentation, Release 5.3 (Dev)

9.1.3 Testing functionality

If you’ve generated the test file from the Nemesis environment utlity, you’ll see a file header, the command to include
the gtest harness, and an empty “test fixture”, along with two example testing blocks. Each TEST_F or TEST com-
mand generates a distinct subtest that appears in the output. This is a good way of grouping related tests. Each test
contains testing macros that will print nothing when they succeed but will provide detailed error descriptions when
they fail.

TEST(Math, simple)
{

int a = 2;
EXPECT_EQ(4, 2 + 2);
EXPECT_GT(5, 2 * 2);
EXPECT_TRUE(is_integer(a));
EXPECT_FALSE(is_float(a));

}

A complete list of the test macros is available in the Google Test primer and the advanced guide.

9.1.4 Additional functionality

The test harness code defined in nemesis_gtest.hh includes additional functionality not written by Google. It
has a custom harness that handles MPI initializing and finalizing (using the Nemesis comm package), and it uses the
Nemesis release metadata to print the Exnihilo and Scale git repository versions.

Additional macros that we define are mostly for comparing floating point values or containers of values:

EXPECT_SOFTEQ(expected, actual, rel_error)
Check for “soft equivalence” (relative error except for numbers near zero) between two values.

Parameters

• expected – expected value

• actual – actual value

• rel_error – numerical tolerance

EXPECT_SOFT_EQ(expected, actual)
Check for “soft equivalence” with a relative error of 1.e-12.

EXPECT_VEC_EQ(expected, actual)
Check for equality between two contiguous containers of simple types (int, unsigned int, float, double, char,
const char*, std::string). Each container can either be a fixed array such as:

int reference[] = {1,2,3};

or a contiguous container (std::vector, Nemesis view field, etc).

If the two container sizes are unequal, the test prints their sizes and returns a failure message. If the sizes are
equal, it will do an element-by-element comparison. Any values (up to the first 40) that do not compare equal
are printed along with their index:

tstVecEq.cc:87: Failure
Values in: actual
Expected: expected
2 of 5 elements differ:
i expected actual
0 1 2
3 4 5

40 Chapter 9. Testing
CASL-U-2015-0079-000

https://code.google.com/p/googletest/wiki/Primer
https://code.google.com/p/googletest/wiki/AdvancedGuide


Exnihilo Documentation, Release 5.3 (Dev)

Parameters

• expected – expected value

• actual – actual value

EXPECT_VEC_SOFTEQ(expected, actual, rel_error)
Check for “soft equivalence” (relative error except for numbers near zero) between two vectors of floating point
values.

Parameters

• expected – expected value

• actual – actual value

• rel_error – numerical tolerance

EXPECT_VEC_SOFTEQ(expected, actual)
Check for vector soft equivalence with a relative error of 1.e-12.

We also provide a function that’s useful for printing “regression” values of integers or floats:

PRINT_EXPECTED(data)
Print a formatted array and initializer list for the given data. For example:

std::vector<int> vec = {1,2,3,4,5};

PRINT_EXPECTED(vec);

will print:

const int expected_vec[] = {1, 2, 3, 4, 5, };

The resulting values can then be copy-pasted to the unit test and used in the expression:

EXPECT_VEC_EQ(expected_vec, vec);

9.1.5 Command line options

The Google test harness provides a number of useful command line options that can be viewed by passing the --help
argument to the command line:

Each individual test block can be executed separately by running the test with the
--gtest_filter=TestCase.testname flag.

9.1.6 Other features worth looking into

• Disabling performance tests by prepending DISABLED_ to a test name.

• Using the ASSERT_ macro to exit a test function when all further tests are known to fail (or cause crashes) if a
condition is not met.

• Adding EXPECT_THROW({func}, nemesis::assertion) to ensure that DBC checks work.

9.1. C++ unit tests 41
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

9.2 Python unit tests

Exnihilo installs the exnihilotest package and the denovo_unittest module, which both wrap and extend
the Python unittest package. Combined, they give the ability to do more advanced testing, they integrate into TriBITS,
and they can run correctly and automatically with MPI.

9.2.1 Creating a unit test

Create a new .py file, either with the Nemesis nemesis-python command or with the function from srjutils,
template-gen tstWhatever.py.

$ template-gen test_mymodule.py
Sucessfully created test_mymodule.py

The file (with dividers omitted for clarity) should look like:

1 from __future__ import (division, absolute_import, print_function, )
2 import omnibus.testing as unittest
3

4 if __name__ == '__main__':
5 unittest.main()

Line 1 contains a standard directive to make Python 2.7 behave more like Python 3: dividing integers yields a floating
point number (use the // operator for C-like integer division); module imports are by default absolute rather than
relative; and the print command acts like a function.

The second line acts as a stand-in for the standard Python unittest module. If testing a standalone Python
package like swordproc, replace omnibus.testing with exnihilotest; if testing SWIG-wrapped code
that might run in parallel (e.g. in the pykba or pyshift packages), then replace omnibus.testing with
denovo_unittest.

Lines 4 and 5 will execute all the unit tests in the file when the script is run.

9.2.2 Adding to a unit test

Unit tests inside the file are created by adding a new class that begins with Test, inherits from
unittest.TestCase, and has at least one method that begins with test_:

class TestSomething(unittest.TestCase):
def test_blah(self):

self.assertEqual(4, 2+2)

Inside the methods are assertions that check for equality between expected and actual results. Each test function is run
independently, so if one assertion fails, separate tests may still be run. For an extensive look at the capabilities of the
package, see the full unittest documentation.

9.2.3 Additional functionality

The exnihilotest package defines several useful macros not available in the standard unittest package.

TestCase.assertDataEqual(self, expected, actual[, eps=1.e-14])
Check all elements recursively in a container. This works on dictionaries, numpy arrays, lists of lists, named
tuples, etc.

Parameters eps (float) – “Soft equivalence” tolerance parameter.

42 Chapter 9. Testing
CASL-U-2015-0079-000

http://docs.python.org/2/library/unittest.html
http://docs.python.org/2/library/unittest.html


Exnihilo Documentation, Release 5.3 (Dev)

TestCase.assertTextEqual(self, expected, actual[, eps=1.e-14])
Compare blocks of text which may have numbers inside it.

Parameters eps (float) – “Soft equivalence” tolerance parameter.

TestCase.assertSoftEquiv(self, expected, actual[, eps=1.e-14])
Check soft equivalence on two floats.

Parameters eps (float) – “Soft equivalence” tolerance parameter.

TestCase.assertXmlFilesEqual(self, expected_f, actual_f, eps=1.e-14)
Compare the structure and contents of two XML files for equality.

Parameters

• expected_f (str) – Expected file object or file path.

• actual_f (str) – Actual file object or file path.

• eps (float) – “Soft equivalence” tolerance parameter.

The denovo_unittest package prints warnings emitted by NEMESIS_WARN at the end of every test that it runs.
When loaded, it prints the current version of Exnihilo and SCALE.

9.2. Python unit tests 43
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

44 Chapter 9. Testing
CASL-U-2015-0079-000



CHAPTER

TEN

DEVELOPMENT ENVIRONMENT

Exnihilo provides templates and functions for developing code in Exnihilo/environment.

10.1 Setting up the Exnihilo development environment

We provide emacs and vim environments for editing source code. Also, a set of code preparation templates,
along with LaTeX document styles are provided. To install the environment simply run the following script in the
Exnihilo/environment directory:

sh ./install.sh /data/env

Here, the /data/env path should be where you want the environment to be installed. The following output is
produced:

>>> Making /data/env
>>> Installing bibtex in /data/env/bibtex
>>> Installing emacs in /data/env/emacs
>>> Installing latex in /data/env/latex
>>> Installing etc/templates in /data/env/etc/templates
>>> Installing tools in /data/env/tools
>>> Installing visit in /data/env/visit
>>> Installing python in /data/env/python
>>> Installing bin in /data/env/bin

========================================================================
Congratulations, you're almost finished the nemesis environment install!

For complete operation you should set the following paths and
environment variables (depending upon your shell):

- Add /data/env/bin to PATH
- Add /data/env/latex to TEXINPUTS

e.g. echo $TEXINPUTS
.:/data/env/latex:

- Add /data/env/bibtex to BSTINPUTS
e.g. echo $BSTINPUTS

.:/data/env/bibtex:
- Copy /data/env/visit/* to ~/.visit

To use the nemesis GNU Emacs or VIM environments see
- environment/README.rst

========================================================================

45
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

The script copies several recommended VisIT color palettes; to use them, copy install/visit/* into
~/.visit.

10.2 Command line tools

Several useful development tools are installed into environment/tools. A few of the more useful ones are
described here. Many of these tools use a small Python framework that allows files to be recursively modified based
on their extensions.

10.2.1 auto-annex

Intelligently add or git-annex untracked files.

usage: auto-annex [path [path ...]]

Each path (either a file or directory) will be examined. If it has not yet been added to the Git repository, a heuristic
algorithm will decide whether to annex it or to add it as a regular git file:

• If a binary file 1 has a size greater than 5 KiB, it is annexed.

• If an image file 2 has a size greater than 25 KiB, it is annexed.

• If an output file 3 has a size greater than 100 KiB, it is annexed.

• If any other file has a size greater than 2 MB, it is annexed.

• Any file less than these size thresholds is added as a regular git file.

10.2.2 check-cols

Determine whether source files are violating the Nemesis 80-column guideline.

usage: check-cols [-h] [-r] [-x EXTENSIONS] path [path ...]

Check for satisfying the 80-column limit. If violating files were found, a
file "violators" will be written containing their paths.

positional arguments:
path Files/dirs to process

optional arguments:
-h, --help show this help message and exit
-r Recursive
-x EXTENSIONS, --extensions EXTENSIONS

Comma-separated extentions to use when doing recursive

1 Binary files are determined by checking the extension against h5 sh5 silo ampx dat bin bmg h5m sat cub dnv 37 bin
docx pptx xlsx ppt doc xls session gui.

2 Image files have en extension png pdf jpg psd svg.
3 Output file names either have extensions of mcnpo out log plt, have paths that end with out.xml or output.xml, or look like

MCNP mctal or meshtal or outp files.

46 Chapter 10. Development Environment
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

10.2.3 fix-comment-paths

Modify the comment blocks at the beginning and end of Nemesis-style files to ensure that the declared file path is
consistent with the actual file path.

usage: fix-comment-paths [-h] [-r] [-x EXTENSIONS] path [path ...]

Update file paths in the comment headers and footers of Nemesis-style files.

positional arguments:
path Files/dirs to process

optional arguments:
-h, --help show this help message and exit
-r Recursive
-x EXTENSIONS, --extensions EXTENSIONS

Comma-separated extentions to use when doing recursive

10.2.4 make-skeleton-scale

Create a “skeleton SCALE” source directory used to build Exnihilo without any of the SCALE source code. This is
primarily used for distributions of ADVANTG, where the SCALE cross section processing code is not used.

usage: make-skeleton-scale SCALEDIR DEST.tgz

10.2.5 update-scale-data

Update the SCALE data directory to the latest version of SCALE data. Your ${DATA} environment variable must
be set for this to work. The first time you run the tool, you must run mkdir ${DATA} to create the initial empty
directory on your machine.

usage: update-scale-data

Update the SCALE data directory (using the DATA environment variable)
from the /projects/scale/scale_dev_data directory on remus.ornl.gov.

Note: In addition to copying the SCALE data itself, this tool saves a copy of the Subversion repository data (version
number and date of change), which is processed by Exnihilo and saved into Omnibus output files for later verification.

10.3 Text editor environments

As previously mentioned, both emacs and vim editing environments are provided that correspond to the Exnihilo
indentation style, along with many other useful editing features.

10.3.1 EMACS Development Environment

To use the nemesis GNU emacs environment add the following to your .emacs or .emacs.d/init.el file:

(setq nemesis-dir "/data/env/emacs")
(add-to-list 'load-path nemesis-dir)
(load-library "nemesis")

10.3. Text editor environments 47
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Other useful emacs packages/modes include

• doxymacs: for doxygen markup in source code

• cmake: for cmake editing

• auctex: for LaTeX editing

• ecb: the emacs code-browser extensions

• auto-complete: auto-completion of symbols (code)

10.3.2 VIM Development Environment

These are vim format commands for compliance with the Exnihilo coding guide. Simply add the ftplugin files to
your ~/.vim/ftplugin , and append vimrc to your existing ~/.vimrc.

48 Chapter 10. Development Environment
CASL-U-2015-0079-000



CHAPTER

ELEVEN

USEFUL TOOLS

The Exnihilo developers tend to use a common group of tools, including git for versioning, Emacs and MacVim for
file editing, etc. This document provides more details on both the standard tool set as well as additional tools in use.

11.1 Git

Git at first is a daunting tool, but a little experience and guidance makes it a powerful ally in the quest for a maintainable
code system.

11.1.1 Git configuration

Git supports a configuration file at ~/.gitconfig. A recommended default is:

[core]
excludesfile = ~/.gitignore
pager = less -r
autocrlf = input
whitespace = trailing-space,space-before-tab

[apply]
whitespace = fix

[color]
ui = auto

[alias]
autoannex = !auto-annex
st = status -s
co = checkout
dc = diff --cached --ignore-space-change
mnc = merge --no-commit --no-ff -s recursive -Xignore-space-change
comall = commit --all

[branch]
autosetuprebase = always

[rebase]
autosquash = true

[push]
default = upstream

[rerere]
enabled = true

[merge]
autosetuprebase = always

[user]
email = johnsonsr@ornl.gov
name = Seth R Johnson

49
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Don’t forget to change the email and name!

The init file points to a global .gitignore file that hides temporary files from Git, preventing them from accidentally
being included in a commit. A recommended default is:

*.aux

*.pyc

*.out

*.log

*.bbl

*.blg

*.synctex.gz

*.nav

*.snm

*.toc

*.swp

*.swo
.DS_Store
visitlog.py

*~
runtp*
srctp*
.ipynb_checkpoints
.cecache*

11.1.2 Merging and conflict resolution

To view all the changes your branch has made since splitting off from master, use the command:

$ git diff $(git merge-base origin/master HEAD)

To merge the topic branch into the master, do the following:

$ git checkout master
$ git reset --hard origin/master
$ git merge --no-commit my-branch

Resolve any conflicts and run all (downstream) tests to ensure that the merged branch does not cause any failures.
Conflicts may be either explicit, where the master and the topic have both modified a line of code, or they may be
implicit, where a new file on the master relies on old behavior that the topic branch changes.

Caution: Implicit conflicts are subtle and cannot be caught by Git’s merge resolution mechanisms. Consider the
following case:

...N----o (other developer)
\

...o----o----o----o---M **master**
\ /
o----R----o *(your topic)*

Commit R in your topic branch renames a class MyClass to MyRenamedClass, and some other developer on their
branch creates a new class at commit N that references MyClass. The other developer merges into the master
branch and everything works. You finish up your topic branch, and everything works. Because your topic branch
and the other developer’s branch didn’t touch the same files, merging into master at M compile individually, and no
merge conflicts will be generated. However, because the new class the other developer created references MyClass
instead of MyRenamedClass, the merge will fail to compile! This is why it’s important to always build and test
before pushing.

50 Chapter 11. Useful tools
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Upon successfully completing the merge, you can push to the origin:

$ git push origin

Using this basic workflow will create a clean repository in which commits are descriptively labeled, and it will be easy
to walk backwards through the history.

11.1.3 Advanced merging

When resolving a long-running branch, where significant restructuring to code has been performed, it’s often easier to
complete the conflict resolution in multiple stages.

Tip: When merging a topic branch that contains a significant code refactor, it takes time to resolve conflicts. The
more time it takes, the more likely it is that another developer pushes changes onto the master branch, and the more
frustrating it will be to redo the merge.

To mitigate this frustration, our git server supports the ability to “lock” the repository while the merge is taking place;
talk to one of the Exnihilo developers for details on how and when to do this, and it will reduce the likelihood of your
having to use the advanced techniques laid out in this section.

The first step is to make sure that the “rerere” option given in Git configuration is set; this allows Git to remember
how you resolved your merge in case you have to perform the merge again. Then, run git merge --no-commit
my-branch, resolving explicit merge conflicts as needed. Run git diff to make sure that no conflict resolution
markers are left in the code, then run git commit --all.

The next major step is to resolve any implicit conflicts. Start building the merged code. If it builds and the tests pass,
you can push. If there are build errors or test failures from the merge, fix them, mark the changes to be added with
git add -A :/, and make a commit with git commit -m "Merge fixes". This creates a checkpoint of
all the merge conflicts that Git won’t be able to automatically resolve.

If the master has not been updated since you started your merge (run git fetch to check), you can run the following
code to collapse your rolls both the explicit and implicit conflicts into the single merge commit:

$ git reset --soft HEAD^
$ git commit --amend

Then git push and you’re done.

However, if someone has pushed to master while you were doing your merge, you have a problem:

...o---o *(unsuspecting developer's topic)*
\

...o----o---o---o **origin/master**
\
M---N **master** (your original merge in progress)

/
...-o---o *(your topic)*

In this case your original merge resolutions are in M, the additional merge fixes are in N, and your master has diverged
from origin/master. If you try to push, you’ll get a message saying your push was rejected.

Warning: If this happens, do not merge origin/master into your merge commit, and also do not merge M’ into
origin/master!

But fear not! There is an easy solution. You can recreate your merge on top of the updated origin/master because
you separated “implicit” merge conflicts into a separate commit and because you have the “rerere” option enabled.
First, copy the git hash so that you can later refer to your original merge attempt:

11.1. Git 51
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

$ git log -1 --oneline
abc123 Merge fixes

To rebase your merge, use the --preserve-merges option:

$ git fetch origin
$ git rebase -p origin/master

which rebases your merge commit. You’ll get a message about “recorded resolutions” being replayed; you should
have to commit to acknowledge that they were applied correctly, and then the rebase should complete. You should end
up with:

...o---o *(unsuspecting developer's topic)*
\

...o----o---o---o---M'---N' **new master**
/

...-o---o *(your topic)*

Then you can “roll” your N’ into M’. (Double-check that no new conflicts have been created, of course.) To do a final
check that you didn’t lose anything in this rebase, you can refer to the earlier git hash you saved and run a git diff:

$ git diff --stat abc123

The only differences should be those the unsuspecting developer introduced in their branch.

Tip: If you didn’t save your git hash earlier, you can recover it by looking through the results of git reflog and
finding the commit named “Merge fixes”.

Once everything is checked, you are of course free to push.

11.2 Git annex

Git-annex is an add-on to Git designed for safely syncing large files between repositories. Many codes output binary
files that measure in GB or more. Git is slow to handle such files, and every user who pulls a copy of a research
repository must also pull all those large files. Because of Git’s nature, it’s also nearly impossible to delete one of those
files when it’s superseded by a newly regenerated version.

Git-annex solves these problems by moving large files into a hidden directory inside your git repository and using
rsync under the hood to copy the files between computers. It maintains an awareness of where your files are located
(through a hidden git branch) and will prevent them from being accidentally deleted.

For example, when git-annex is configured locally and on the server, to add some large research result alongside some
smaller text documents, you might do the following:

# First, add large files to the annex. This moves them to
# .git/annex/objects and creates symlinks in your directory.
git annex add *.h5
git add .
git commit -m "Added some files"

Now these large files are stored securely on your computer. Calling git rm will not delete the original files; you’d
have to run git annex drop to remove them.

52 Chapter 11. Useful tools
CASL-U-2015-0079-000

http://git-annex.branchable.com


Exnihilo Documentation, Release 5.3 (Dev)

11.2.1 Installation

On the Mac, the easiest way to install is to download the OS X binary. After you copy the app to /Applications,
you can symbolically link the following important files to /usr/local/bin or some other convenient location:

cd /Applications/git-annex.app/Contents/MacOS/bundle/
ln -s git-annex git-annex-shell gsha256sum /usr/local/bin

You should of course ensure that /usr/local/bin is included in your $PATH environment variable.

11.2.2 Creating a research repository

On the server system, you’ll want to initialize a bare (i.e., only git files and no working copies of the files) repository
accessible and writable by your group.

$ git init --bare --shared srj_annex
Initialized empty shared Git repository in /repos/git/srj_annex/

If you have git-annex set up correctly with your paths, you can then initialize git-annex with a unique name for
this repository:

$ git annex init origin
init origin ok
(Recording state in git...)

Now, clone your repository on your personal computer:

$ git clone ssh://server/repos/git/srj_annex
Cloning into 'srj_annex'...

That’s it: you’ve now got git-annex-compatible repositories on the server and your computer.

You can also git annex init on existing repositories, and add files to those, but because they might already have
obnoxiously large files in them it may be better to simply create a new repository. If you’re a power user and want to
preserve your history but annex old files, you may be able to adapt use this advanced git-filter technique.

11.2.3 Adding files

In the Nemesis environment, we provide a tool auto-annex that assists in determining whether files should be added to
the repository or added to the git-annex store. Instead of calling:

$ git add .

after creating new files, you should call:

$ auto-annex .

(assuming the Nemesis environment tools are in your path.)

11.2.4 Adding files manually

Instead of using the auto-annex tool, files can be added manually.

When you have a commit to make, it’s better to add large files with git-annex before adding them with git. This is
because git has to do extensive processing of the file’s entire contents, whereas git-annex has a much shorter task to
perform.

11.2. Git annex 53
CASL-U-2015-0079-000

https://git-annex.branchable.com/install/
http://git-annex.branchable.com/tips/How_to_retroactively_annex_a_file_already_in_a_git_repo/


Exnihilo Documentation, Release 5.3 (Dev)

# (move files in or run your code)
$ git annex add *.h5
(Recording state in git...)
$ git add .
$ git commit -m "Initial commit"
[master (root-commit) ac4ed4c] Initial commit

Notice that after the first git annex command, your HDF5 files have become symlinks that point to a hidden
directory stored only on your computer (at the moment). Pushing to the origin only pushes the symbolic link, not the
actual data. (Thus, for very large data files that you probably won’t ever need to share, you can limit their duplication.)
To actually push the annexed files, you should not only push your master branch...:

$ git push -u origin HEAD
Counting objects: 5, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 364 bytes | 0 bytes/s, done.
Total 4 (delta 0), reused 0 (delta 0)
To ssh://server/repos/git/srj_annex

* [new branch] HEAD -> master

...but also copy the annexed files:

$ git annex copy --to origin .
(merging origin/git-annex into git-annex...)
(Recording state in git...)
copy celltally.h5 (checking origin...) (to origin...)
....
ok
(Recording state in git...)

Now git-annex will tell you that you’ve safely stored copies of the large file both here and on your remote server:

$ git annex whereis celltally.h5
whereis celltally.h5 (2 copies)

68214887-...... -- [origin]
9e9236ec-...... -- s3j@local~/srj_annex [here]

If more than one person is syncing with your repository, it might be necessary to run git annex sync to see all
the remote locations where your file is stored.

11.2.5 Managing files

At this point, since git-annex knows that your file is safely stored elsewhere, you can tell it to “drop” the file, or remove
the local copy:

$ git annex drop celltally.h5
drop celltally.h5 (checking origin...) ok
(Recording state in git...)

And now of course, you can no longer access the file on your computer because it’s been deleted:

$ h5dump celltally.h5
h5dump error: unable to open file "celltally.h5"

To get it back by pulling it from the server, you use git annex get:

54 Chapter 11. Useful tools
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

$ git annex get celltally.h5
get celltally.h5 (from origin...)
SHA256E-.....h5

714736 100% 40.72kB/s 0:00:17 (xfer#1, to-check=0/1)
...
ok
(Recording state in git...)

By the way, all these transfers are rsync over ssh, so it’s efficient, secure, and fast.

If you need to modify an annexed file, which is read-only by design, you’ll have to “unlock” it:

git annex edit celltally.h5
unlock celltally.h5 (copying...) ok

Then you can overwrite it, and the next time you commit, git annex will re-annex the modified file (under a new unique
file name):

$ git commit -m "Modified cell tally file"
add celltally.h5 ok
ok
(Recording state in git...)
[master 2fb8463] Modified cell tally file

Thus both the original file and the modified copy are preserved.

Finally, if you have multiple computers referencing your git annex-ed files, you can run git annex sync to ensure
that your computer’s knowledge of what files are safely annexed is in sync with the server’s knowledge.

11.2.6 Cautions

• I’ve had weird behavior when rebasing with an annexed repository. I’d recommend not rebasing, and just
merging your remote and local branches.

• Because annexed files are stored in .git/objects rather than the git repostiory itself, it is imperative that
you call git annex copy in addition to git push if you plan on deleting and re-pulling the working copy
of your repository.

11.3 iPython notebook

iPython notebook is a Python-base interactive analysis environment that we frequently use. We have example
files and analysis notebooks in various directories, including examples/, packages/Physica/sce/nb, and
packages/Omnibus/frontend/nb.

iPython integrates into Exnihilo via both the Python wrappers (which expose compiled C++ code) and the Omnibus
postprocessing suite. The Python wrappers enable users to explore SCALE multigroup and CE data, to build multi-
group cross sections, and even to drive SCALE sequences to generate multigroup data.

11.3.1 General conventions

We typically begin each notebook with some boilerplate code that enables various useful packages and default settings:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

11.3. iPython notebook 55
CASL-U-2015-0079-000

http://ipython.org/notebook.html


Exnihilo Documentation, Release 5.3 (Dev)

from omnibus.parser.validator import (MTValidator, NuclideValidator,
to_nuclide)

name_to_mt = MTValidator.to_mt

from srjutils.matplotlib import (article_style, screen_style, poster_style,
grid)

%matplotlib inline
screen_style()

pd.set_option('display.float_format', '{:.3e}'.format)
pd.set_option('display.max_rows', 25)

To save a figure for inclusion in a technical article, you should modify the plot settings to use sans-serif fonts and so
forth using the article_style function:

article_style()
plt.plot(x, y)
plt.savefig("everythingisawesome.pdf")

11.3.2 Configuration

To create and edit the default iPython notebook:

$ ipython profile create

If you have a Mac with a “Retina” display or some other high-DPI monitor, you can set iPython to default to producing
2x-resolution images for inline display:

$ open ~/.ipython/profile_default/ipython_notebook_config.py

and set

c.InlineBackend.figure_format = 'retina'

56 Chapter 11. Useful tools
CASL-U-2015-0079-000



Part III

User Guide: Omnibus

57
CASL-U-2015-0079-000



CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Omnibus is the general-purpose front end to Exnihilo. It provides an easy and “traditional” ASCII interface to the
deterministic and Monte Carlo solvers in Exnihilo.

59
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

60
CASL-U-2015-0079-000



CHAPTER

TWELVE

FRONT END INTERFACE

Your Exnihilo installation contains not only an omnibus executable (which runs Denovo and Shift) but also additional
Python scripts that preprocess user input and program output.

12.1 Running Omnibus

The omnibus-run script is able to create an internal Omnibus input file, drive and monitor the omnibus executable
as it’s being run, and postprocess the output.

Note: Unlike most code drivers, omnibus-run is meant to be executed on the head node of a cluster rather than on a
compute node. Using a machinefile (if the [RUN=mpi] option is being used) or pbs submission (for [RUN=pbs]),
it is able to submit the job to other nodes and monitor the application process.

Tip: For systems such as Titan that have special filespaces (Lustre) that from which the code is executed, the
easiest way to ensure that all Omnibus I/O remains on that system is to leave the .omn input file on Lustre and call
omnibus-run from that directory.

12.1.1 Example on a local machine

Suppose you have an input file batman.omn on your local machine:

[PROBLEM]
name Batman
description "I'm the Batman."

! -- snip -- !

[RUN=mpi]
np 4

If Omnibus is installed with MPI, all you need to do is to open a terminal and call:

$ omnibus-run batman.omn

This runs the following sequence:

1. The preprocessor will validate your input.

2. After successful validation, the precprocessor will write an xml intermediate file read in by the omnibus
binary executable. It will also, if necessary, generate other input files (such as the run tape file used for running
on MCNP geometry).

61
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

3. The script will launch a local process with arguments like mpirun -np 4 omnibus batman.xml, then
save the output to the current directory and echo it to the screen.

4. When the omnibus binary is complete, it will write out tally data and other program output to several different
files.

5. A Python postprocessor reads the output and converts it to a human-readable format, leaving the original output
files for later postprocessing.

12.1.2 Example on a cluster using PBS/Torque

In this example, we copy the local machine problem and change the run block (see [RUN=pbs]):

[PROBLEM]
name Batman
description "I'm the Batman."

! -- snip -- !

[RUN=pbs]
nodes 1
ppn 32
walltime "1:00:00"

When omnibus-run is executed on the head node, it will launch qsub, monitor the job ID until it begins running
on the compute node, and echos output to the screen over an ssh connection. The process on the head node remains
almost entirely idle during the problem run, so the user need not worry about incurring the wrath of the system’s
administrator.

12.2 Omnibus input and output files

Omnibus accepts multiple input formats, writes (possibly multiple) intermediate files, and processes the output into
more useful formats.

The following image describes how files are generated and used:

62 Chapter 12. Front End Interface
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Frontend inputs

Preprocess outputs

Execution outputs

Postprocess outputs

problem.omn

omnibus-pre

extend.yamlmodify.py

problem.inp.xmlproblem.inp.omnproblem.omn.yaml

-g

problem.xml.yaml

-g

omnibus

problem.out.xmlcelltally.h5cyltally.h5

omnibus-post

problem.out.rst

problem.out.html

problem-keff.pdfcelltally.csv

Here, the small black boxes are the typical input/output files, blue circles are scripts, the red circle is the Omnibus
executable, and dotted lines are optional files (e.g. having multiple input files or using the -g option when calling
omnibus-run or omnibus-pre).

12.2.1 Input files

Omnibus ASCII input files (with the ‘.omn’ extension) are described in ASCII input:

[PROBLEM]
name "CE pin cell lava_scempp kcode problem"
mode kcode
xml_output kcode.xml

12.2. Omnibus input and output files 63
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

[GEOMETRY=mcnp]
mcnp mcnp_godiva.mcnp

We also support YAML and JSON heirarchical databases, which may appeal more to power users:

{
"problem": {

"name": "CE pin cell lava_scempp kcode problem",
"mode": "kcode",
"xml_output": "kcode.xml"
},

"geometry": {
"_type": "mcnp",
"input": "mcnp_godiva.mcnp",

}
}

Additionally supported are Python files that can modify an existing (e.g. ASCII-created) database. This last method
is extremely powerful for automating repetitious tallies, as demonstrated in this example that creates five similar
cylindrical mesh tallies that share an energy grid:

import numpy as np

new_tallies = []

neutron_bins = [2e7, 1e5, 1e3, 10, 1, 1e-5]
photon_bins = np.linspace(0, 1e6, 11)[::-1] # 10 linear bins to 1 MeV
reactions = ["flux"]

targets = [
# area, loc, x, y, r
( 'PTP', 'FT-A1', -4.66117, -2.69113, 0.929640,),
('SVXF', 'VXF-1', 3.07648, 39.09038, 2.011680,),
('SVXF', 'VXF-2', -3.45642, 43.91796, 2.011680,),
('SVXF', 'VXF-3', -9.15368, 38.12784, 2.011680,),
( 'PTP', 'FT-A1', -4.66117, -2.69113, 0.929640,),
]

# Add each tally to the list
for (area, loc, x, y, r) in targets:

tal = {
'name': "%s:%s" % (area, loc),
'description': "flux in %s target location %s" % (area, loc),
'reactions': reactions,
'r': [0.0, r],
'theta': [0.0, 1.0], # divided by 2pi
'translate': [x, y, 0],
'z': [-25.4, 25.4],
'neutron_bins': neutron_bins,
'photon_bins': photon_bins,
}

new_tallies.append(tal)

# Set all cylindrical tallies
assert 'tally' in db
assert 'cylmesh' not in db['tally']
db['tally']['cylmesh'] = new_tallies

64 Chapter 12. Front End Interface
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

12.2.2 Preprocessing output files

The preprocessing step will typically create several files for an input problem.omn:

problem.json If using the omnibus-run front end, this will be created: it is a fully processed and
reformatted version of the problem input.

problem.inp.omn If using the omnibus-run front end, this will be created: it is a fully processed
and reformatted version of the problem input.

problem.inp.xml The Teuchos ParameterList XML file is read by the omnibus executable.

problem.inp.xml.json This file is simply a more-readable version of the XML file, produced
when the -g option is enabled for debugging.

Additionally, if MCNP geometry, physics, or sources are being used, run tape files will be generated. Finally, if a
[RUN=pbs] block is present, a problem.pbs submission script will be generated.

12.2.3 Executable output files

All output file names are generated from user input (although the XML output name defaults to
problem.out.xml). The post-processed problem.html file will contain a list of the created files and their
descriptions.

12.3 Running Omnibus manually

The relationship between the various input files and exectuables is necessarily complicated, which is why the
omnibus-run command is preferred. To generate the Omnibus XML file from an ASCII input, call:

$ omnibus-pre my_problem.omn

This will create a Teuchos ParameterList XML input file unikitty.xml. This parameter list is then run with the
Omnibus driver:

mpirun -np 16 omnibus my_problem.inp.xml

Postprocessing (including plotting keff and Shannon entropy convergence, as well as rendering the XML output into
a more human-readable format) is done with the command:

omnibus-post my_problem.out.xml

12.4 Command line tools

12.4.1 omnibus-run

Run the Omnibus preprocessor, run Omnibus, and run the postprocessor.

Run Omnibus from start to finish.

usage: omnibus-run [-h] [--version] [-g] [-c] [-v] [-q] [--very-quiet]
[--silent]
[--log {None,DEBUG,STATUS,INFO,WARNING,ERROR,CRITICAL}]
[--doc]
[inp [inp ...]]

12.3. Running Omnibus manually 65
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Positional arguments:

inp Input file names (omnibus, yaml, and/or python).

Options:

--version show program’s version number and exit

-g=False, --debug=False Enable extended debug assertions

-c=False, --clobber=False Overwrite exiting output files rather than renaming them.

-v=STATUS, --verbose=STATUS Print all debug messages

-q, --quiet Only print informational and warning messages

--very-quiet Only print warning messages

--silent Print messages only on failure

--log Create a log file with the given verbosity

Possible choices: None, DEBUG, STATUS, INFO, WARNING, ERROR,
CRITICAL

--doc=False Print documentation and exit.

Exnihilo version (UNKNOWN)

12.4.2 omnibus-pre

Generate an XML input file for Omnibus, validating input along the way.

Preprocess Omnibus input files.

usage: omnibus-pre [-h] [--version] [-g] [-c] [-v] [-q] [--very-quiet]
[--silent]
[--log {None,DEBUG,STATUS,INFO,WARNING,ERROR,CRITICAL}]
[-o OUTPUT] [--doc]
[inp [inp ...]]

Positional arguments:

inp Input file names (omnibus, json, yaml, and/or python).

Options:

--version show program’s version number and exit

-g=False, --debug=False Enable extended debug assertions

-c=False, --clobber=False Overwrite exiting output files rather than renaming them.

-v=STATUS, --verbose=STATUS Print all debug messages

-q, --quiet Only print informational and warning messages

--very-quiet Only print warning messages

--silent Print messages only on failure

--log Create a log file with the given verbosity

Possible choices: None, DEBUG, STATUS, INFO, WARNING, ERROR,
CRITICAL

-o, --output Output filename (xml, json, omn, yaml)

66 Chapter 12. Front End Interface
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

--doc=False Print documentation and exit.

Exnihilo version (UNKNOWN)

12.4.3 omnibus

The actual Omnibus binary executable.

usage: omnibus [--version] xml_input

Positional arguments:

xml_input Path to the XML parameter input file.

Options:

--version Show usage information and exit.

12.4.4 omnibus-post

Postprocess tally output.

Post-process Omnibus output.

usage: omnibus-post [-h] [--version] [-g] [-c] [-v] [-q] [--very-quiet]
[--silent]
[--log {None,DEBUG,STATUS,INFO,WARNING,ERROR,CRITICAL}]
[--fast]
outp

Positional arguments:

outp Omnibus XML output file names

Options:

--version show program’s version number and exit

-g=False, --debug=False Enable extended debug assertions

-c=False, --clobber=False Overwrite exiting output files rather than renaming them.

-v=STATUS, --verbose=STATUS Print all debug messages

-q, --quiet Only print informational and warning messages

--very-quiet Only print warning messages

--silent Print messages only on failure

--log Create a log file with the given verbosity

Possible choices: None, DEBUG, STATUS, INFO, WARNING, ERROR,
CRITICAL

--fast=False Undocumented

Exnihilo version (UNKNOWN)

12.4. Command line tools 67
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

12.5 Advanced execution through Python

Because the Omnibus front end is simply a Python script, it’s possible to drive it through another Python script. For
example, the shell command

$ omnibus-run inyoka.omn

can be written as the following python script:

from omnibus.scripts import omnibus_run

omnibus_run.run(["inyoka.omn"])

The first argument to run takes a list, because multiple files can be passed to the input just like with the scripted front
end. An additional and very nifty feature is that a python function can also be passed to modify the database, just like
a Python script can be passed through the command line:

from omnibus.scripts import omnibus_run

def change_name(db):
db['problem']['name'] = "Something else"

omnibus_run.run(["inyoka.omn", change_name])

This opens up exciting possiblities of automating scaling studies and parameter studies. For example, this script
performs a weak scaling run:

from collections import defaultdict
import json
import os

from omnibus.scripts import omnibus_run
from omnibus.utils import working_dir

# Number of histories
histories_per_core = 1e4

data = defaultdict(list)

# We run in a subdirectory, so save the absolute path to our input
omn_input = os.path.abspath("omn_input.omn")

for num_procs in range(1, 8+1):
def np_setter(db):

# Adjust number of cores
db['run'] = {

'_type': "mpi",
'np': num_procs,
}

# Adjust number of histories
db['shift']['np'] = num_procs * histories_per_core

# Execute in a subdirectory and extract the postprocessed out.xml file
with working_dir("np-%01d" % (num_procs)):

manager = omnibus_run.run_or_pp([omn_input, np_setter])

data['cores'].append(manager.num_procs)

68 Chapter 12. Front End Interface
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

data['histories'].append(manager.num_histories)
data['solve_time'].append(manager.get_timing("shift",

"shift::Fixed_Source_Solver.solve"))
# Save timing results
with open('results.json', 'w') as f:

json.dump(dict(data), f)

The special run_or_pp command will reuse any existing .out.xml file if available, so this script can be resumed
if canceled partway. The result is a lovely file of solution times:

{"cores": [1, 2, 3, 4, 5, 6, 7, 8],
"histories": [10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000],
"solve_time": [66.6750500202179, 71.05331420898438, 73.68022584915161,

74.62563920021057, 75.13657093048096, 75.84799098968506,
76.0614001750946, 76.82996106147766]}

which can then be plotted or analyzed:

import json
import pandas as pd
with open("results.json") as f:

data = json.load(f)

results = pd.DataFrame.from_dict(data)
results.index = results.pop("cores")

results['solve_time'].plot()

12.6 Parameter list explanation

The omnibus executable runs using a heirarchical XML parameter list. The necessary complexity of the parameter
list makes it nearly prohibitive for a user to write it from scratch. However, some knowledge of the underlying XML
parameter list structure is useful in understanding the design choices made for the Omnibus frontend.

The parameter list tree built by Omnibus consists of three general types of elements:

• Parameters: simple elements with a name and a particular range of allowed values (e.g. a string, a real number
between zero and one, or a list of integers);

• Databases: containers of parameters, sub-databases, and sublists; and

• Sublists: a list of congruent databases (e.g. materials in a problem).

Each database has to conform to a specific “class”, such as the PROBLEM database or the SHIFT database. Some
databases have different “types”: these are viewed as interchangeable by the enclosing database, but the different
types may have different parameters associated with them. For example, the “SHAPE” sub-database of the SOURCE
database could be a “box” type or a “cylinder” type. The SOURCE database requires a single shape sub-database,
but each of those two types has a different set of required parameters (the dimensions of the box versus the width and
height of the cylinder).

12.7 Developer notes

Exnihilo developers will need to modify the Omnibus input description to expose new transport capabilities to the
front end. The input description is contained in the Python files at Omnibus/frontend/omnibus/omn. The
root-level database is located in root.py, and sub-databases are located alongside it.

12.6. Parameter list explanation 69
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

To update the ASCII input regression problems when the input database changes, run make regression_update
from Exnihilo/packages/Omnibus/frontend inside the build directory.

12.7.1 Updating documentation

Additional documentation (besides the one-line parameter descriptions) can be added by expanding the files inside
Omnibus/frontend/doc/detail. All of the .rst files will be read and treated equally; the multiple .rst files
are just for convenience in editing and organizing the files.

The pseudo-directive .. OMNIDOC {location} is used to insert the following documentation (until the next
.. OMNIDOC directive or the end of the file). The {location} is a simple syntax that is parsed to determine
where in the Omnibus input documentation the contents should be inserted:

• Use . to separate subdatabases.

• Use = to specify a particular subtype for a database.

• The final entry can be a parameter or command, or it can be _intro to be printed at the top of a database
description, or _concl to be added to the bottom.

Example locations are:

problem.mode
geometry=rtk._intro
source.shape=box.box
shift.decomposition.overlap

To regenerate the Omnibus input documentation, run make omnidoc from
Exnihilo/packages/Omnibus/frontend inside the build directory.

70 Chapter 12. Front End Interface
CASL-U-2015-0079-000



CHAPTER

THIRTEEN

OMNIBUS ASCII INPUT FORMAT

The Omnibus ASCII input is a human-readable, minimal input syntax for Omnibus. The underlying Omnibus data
structure is hierarchical, and the ASCII input is designed to flatten the hierarchy. The input consists of “blocks” of
input data, each of which represents a database, and cards, which consist of parameters and “commands”, which
generate parameters or perform other functions.

13.1 Blocks

Block titles have the formats

[CLASS]
[CLASS=type]
[CLASS name]
[PARENT][CLASS=type name]
[GRANDPARENT][PARENT][CLASS=type name]

which embeds the location in the hierarchy, the database class, the database type, and the name of this particular
instance of the database class. The “name” (which requires a value with only letters, numbers, and the underscore) is
simply a shorthand for declaring the block and adding a “name” parameter. The class type is required for databases
that have multiple allowed types (e.g. geometry and physics) but disallowed for types that do not. The block will be
inserted inside the last instance of the [GRANDPARENT][PARENT] block.

Whitespace in block titles, as well as capitalization for the class and type attributes, is ignored.

Note: The exact regular expression used to match titles is:

^(?:\[\s*(\w+)(?:\s*=\s*(\w+))?\s*(\w+)?\]\s*)+$

13.2 Cards

Cards are started on a new line; an indentation of four or more spaces is treated as a continuation of the previous
card. Spaces separate values in a parameter list or arguments in a command. For strings, quotation marks can be used
to treat whitespace as standard characters. The backslash can be used to escape quotation marks inside a quoted string.

For example, these two parameters demonstrate the correct usage of whitespace:

param This is a list of seven parameters.
param "This is a single parameter with an \" embedded quotation mark."

Tip: One common input error is to mistake a small indentation on the next line for a continuation. This statement

71
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

declares three parameters inside a block:

[WAYNE]
something value value

business business numbers
is this working

whereas this is one parameter with multiple values:

[WAYNE]
something value value

business business numbers
is this working

Using the syntax highlighting files for Vim and Emacs provided in the Exnihilo/environment directory (see
Development Environment) will make such errors very obvious.

13.3 Other features

Whitespace (outside of the initial line indentation and when within quotation marks) is generally flexible and ignored.

Inside numerical lists, standard MCNP interpolation/repetition shorthands “I”, “ILOG”, “M”, and “R” are imple-
mented:

x_coordinates 1 2I 4

is interpolated to form:

x_coordinates 1 2 3 4

Tip: The vacuum_omnibus_input script will read your Omnibus input file, reformat it, and rewrite it. If the
input and output are not logically the same, there is a subtle syntax error in the input file (e.g. not indenting when
continuing). This tool only parses the input file; it does no expansion, validation, or defaulting.

Tip: To view a validated and reformatted ASCII version of your input, you can explicitly tell the preprocessor to save
an .omn file:

$ omnibus-pre problem.omn -o problem.validated.omn

72 Chapter 13. Omnibus ASCII Input Format
CASL-U-2015-0079-000



CHAPTER

FOURTEEN

OMNIBUS INPUT DATABASE SPECIFICATION

version 5.3 (branch ‘doc’ #60625037 on 2015FEB17)

date 2015-02-17 22:08:00

The Omnibus input is split into a heirarchy of blocks. Each of the first-level blocks (and the overall problem input file)
are described in the following section:

14.1 Omnibus input file

14.1.1 Sub-databases

Name and type Frequency

problem
Exactly once

response = { histogram, interpolated} Zero or more

tally
Optional

source = { separable, fissionmesh, mesh} At least one
geometry = { mcnp, scale, rtk, mesh} Exactly once

comp Optional

physics = { mg, sce, smg} At least one

depletion
Optional

shift
Optional

denovo
Optional

manualww
Optional

run = { serial, mpi, pbs} Optional

14.1.2 Additional defaults

• If running a kcode problem with only Denovo, no source needs to be defined.

73
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

14.1.3 Additional restrictions

• The ‘denovo’ and ‘manualww’ databases are mutually exclusive..

• No transport will be run if [SHIFT] and [DENOVO] databases are both missing..

14.2 [PROBLEM]

The problem database specifies top-level information about the problem being run. It includes the output file name, a
unique problem identifier, and overall solution technique.

14.2.1 Parameters

name
Descriptive problem name.

Default ‘Untitled’

Type string

mode
Problem mode.

Valid modes are:

kcode Solve the k-eigenvalue problem for criticality safety or reactor physics analysis.

forward Solve a fixed-source problem for shielding calculations etc.

check Do not transport any particles: parse the input, generate the necessary files, set up the problem geometry
and physics, then exit.

Type ‘kcode’, or ‘forward’

14.2.2 Advanced parameters

These parameters are not meant for typical use.

xml_output / xml
Destination path for the XML output file.

Type file path to write (extension ‘.xml’)

pid
Unique identifier automatically set for this problem run.

The problem identifier (pid) is a unique string generated by the Omnibus preprocessor to ensure that input and
output files are properly correlated. The problem ID value added to the XML input file is copied to the XML
output file as well as all relevant HDF5 output files. It’s comprised of the problem execution date and a randomly
generated unique identifier string (UUID).

Type string

74 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

14.2.3 Additional defaults

• Default the XML output path to input.out.xml.

• Set the unique problem identifier for this run.

14.3 [RESPONSE]

The RESPONSE block is for defining energy- and particle-dependent responses such as dose conversion factors. Each
response can be used multiple times in the tallies.

14.4 [RESPONSE=histogram]

14.4.1 Parameters

name
Short title or label for response.

Type string

description
Optional longer descriptive string.

Default

‘’

Type string

energy_bounds / e
Lowest bound plus upper bounds for the histograms.

Type list of monotonically increasing floats

Units eV

response_values / vals
Histogram response values.

Type list of floats

particle_type / pt
Particle type to apply this response.

Type particle type (‘p’,’n’,’np’,’neutron’,’photon’)

14.4.2 Additional restrictions

• Size of energy bounds must be one greater than the number of response values.

14.4.3 Advanced

The following parameters are renamed or reorganized when being output to the Omnibus XML input file:

Parameter Renamed subdatabase Renamed parameter
energy_bounds energy_points

14.3. [RESPONSE] 75
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

14.5 [RESPONSE=interpolated]

14.5.1 Parameters

name
Short title or label for response.

Type string

description
Optional longer descriptive string.

Default

‘’

Type string

interpolation_type / interp
Type of interpolated response.

Type ‘linear’, ‘log_lin’, ‘lin_log’, or ‘log_log’

energy_points / e
Energy points.

Type list of monotonically increasing floats

Units eV

response_values / vals
Response values at energy points.

Type list of floats

particle_type / pt
Particle type to apply this response.

Type particle type (‘p’,’n’,’np’,’neutron’,’photon’)

14.5.2 Additional restrictions

• Response energies must be list of positive floatsfor log_log and log_lin response types.

• Response energies must be list of positive floatsfor log_log and lin_log response types.

14.6 [TALLY]

The tally database specifies tallies and problem diagnostics.

General tallies support a common set of attributes, including a name and optional description, a list of reactions to
tally, a list of [RESPONSE] objects, and neutron and photon energy bin boundaries.

Note: Unlike other Monte Carlo transport codes, the bin boundaries in Omnibus are truly boundaries, not upper
or lower energies. Thus the number of energy bins will be one less than the number of bounds. To reproduce the
behavior of MCNP and Monaco, which tally from the cutoff energy to the lowest given energy, you must explicitly
add the cutoff energy as the lowest energy bound.

76 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Because multiple tallies can write to the same files, file names and prefixes are saved in the main [TALLY] block.

14.6.1 Sub-databases

Name and type Frequency

mesh
Zero or more

cylmesh
Zero or more

cell
Zero or more

diagnostic = { pathlength, collision, source, history, de-
bug}

Zero or more

sensitivity
Optional

14.6.2 Parameters

mesh_silo_output
Prefix name for mesh tally silo output files.

Default ‘meshtally’

Type string

Applicability when at least one MESH tally is present.

cell_hdf5_output / cell_out
Name of cell tally hdf5 output file.

Default ‘celltally.h5’

Type file path to write (extension ‘.h5’) (empty value allowed)

Applicability when at least one CELL tally is present.

cylmesh_hdf5_output / cyl_out
Name of small cylindrical tally hdf5 output file.

Default ‘cyltally.h5’

Type file path to write (extension ‘.h5’) (empty value allowed)

Applicability when at least one CYLMESH tally is present.

mesh_hdf5_output / mesh_out
Name of mesh tally hdf5 output file.

Default ‘meshtally.h5’

Type file path to write (extension ‘.h5’) (empty value allowed)

Applicability when at least one MESH tally is present.

14.6. [TALLY] 77
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

14.6.3 Additional restrictions

• [TALLY] block must contain at least one sublist (MESH, CELL, etc.).

14.6.4 [TALLY][MESH]

Shift supports multiple structured Cartesian path length mesh tallies. The mesh can be defined over all or part of the
physical problem geometry. The Cartesian mesh tally is output at the end of a problem in Silo format for easy analysis
using VisIt, and in HDF5 format for analysis.

Parameters

name
Short title or label for the tally.

Type string

description / desc
Optional longer descriptive string.

Default

‘’

Type string

reactions / rxn
Reactions to calculate for this tally.

Default [’flux’]

Type list of ‘flux’, ‘total’, ‘absorption’, ‘scattering’, ‘fission’, ‘nu_fission’, ‘kappa_sigma’, or
‘kerma’

responses / resp
Responses for this tally.

Default []

Type list of strings

normalization
Constant multiplicative factor to apply to tally results.

Default 1.0

Type positive real number

neutron_bins / nbins
Energy bin boundaries for neutrons.

Default []

Type nonnegative floats in decreasing order

Units eV

photon_bins / pbins
Energy bin boundaries for photons.

Default []

Type nonnegative floats in decreasing order

78 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Units eV

x
Mesh tally coordinates along the X axis.

Type list of two or more monotonically increasing floats

Units cm

y
Mesh tally coordinates along the Y axis.

Type list of two or more monotonically increasing floats

Units cm

z
Mesh tally coordinates along the Z axis.

Type list of two or more monotonically increasing floats

Units cm

Additional restrictions

• Response names are validated against [RESPONSE] blocks.

14.6.5 [TALLY][CYLMESH]

Particles can be tracked on a translated, rotated cylinder broken into (𝑟, 𝑧, 𝜃) mesh cells.

Parameters

name
Short title or label for the tally.

Type string

description / desc
Optional longer descriptive string.

Default

‘’

Type string

reactions / rxn
Reactions to calculate for this tally.

Default [’flux’]

Type list of ‘flux’, ‘total’, ‘absorption’, ‘scattering’, ‘fission’, ‘nu_fission’, ‘kappa_sigma’, or
‘kerma’

responses / resp
Responses for this tally.

Default []

Type list of strings

14.6. [TALLY] 79
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

normalization
Constant multiplicative factor to apply to tally results.

Default 1.0

Type positive real number

neutron_bins / nbins
Energy bin boundaries for neutrons.

Default []

Type nonnegative floats in decreasing order

Units eV

photon_bins / pbins
Energy bin boundaries for photons.

Default []

Type nonnegative floats in decreasing order

Units eV

r
Radial mesh coordinates.

Type list of two or more monotonically increasing floats

Units cm

theta
Theta mesh coordinates.

Default [0.0, 1.0]

Type list of two or more monotonically increasing floats

Units revolutions

z
Mesh coordinates along the Z axis.

Type list of two or more monotonically increasing floats

Units cm

rotate / rot
Rotation matrix.

Default [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0]

Type row-major flattened matrix

translate / trans
Translation vector (applied after rotation).

Default [0.0, 0.0, 0.0]

Type xyz coordinates

Additional restrictions

• Response names are validated against [RESPONSE] blocks.

80 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

14.6.6 [TALLY][CELL]

Geometry cells and unions of cells are tallied using a hash table, allowing constant-time scaling with respect to the
number of total cells being tallied.

The recommended way to tally multiple particle spectra in the same cell is to use a single tally.

[TALLY][CELL energybinned]
description "5n3g energy-binned tally."
reactions flux
cells 1 100 4:5:6
neutron_bins 1e7 1e6 1e3 10 1 1e-3
photon_bins 2e7 1e6 1e5 1e3

Parameters

name
Short title or label for the tally.

Type string

description / desc
Optional longer descriptive string.

Default

‘’

Type string

reactions / rxn
Reactions to calculate for this tally.

Default [’flux’]

Type list of ‘flux’, ‘total’, ‘absorption’, ‘scattering’, ‘fission’, ‘nu_fission’, ‘kappa_sigma’, or
‘kerma’

responses / resp
Responses for this tally.

Default []

Type list of strings

normalization
Constant multiplicative factor to apply to tally results.

Default 1.0

Type positive real number

neutron_bins / nbins
Energy bin boundaries for neutrons.

Default []

Type nonnegative floats in decreasing order

Units eV

photon_bins / pbins
Energy bin boundaries for photons.

14.6. [TALLY] 81
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Default []

Type nonnegative floats in decreasing order

Units eV

Advanced parameters

These parameters are not meant for typical use.

union_cells
Flattened list of cells in each union.

Type list of integers

union_lengths
Number of cells per union in the above list.

Type list of integers

Commands

These commands generate one or more parameters.

cells
Generate ‘union_cells’ and ‘union_lengths’ from colon-separated unions.

Additional restrictions

• Response names are validated against [RESPONSE] blocks.

14.6.7 [TALLY][DIAGNOSTIC=pathlength]

The path length diagnostic produces a distribution of the path length traveled by a particle between events. Note that
this is not the same as the true path length distribution (distance between collisions), as the events considered by Shift
include material boundary crossings, problem boundary crossings, etc.

Parameters

pl_bins
Lower bin boundaries for the traversed path lengths in each event.

Type list of positive floats

event_bins
Lower bin boundaries for the number of events per history.

Type list of monotonically increasing nonnegative integers

14.6.8 [TALLY][DIAGNOSTIC=collision]

The collision diagnostic tallies the number of collisions per history as a function of material, nuclide, and reaction ID.

82 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Parameters

output
Path to collision diagnostic hdf5 output file.

Default ‘collisions.h5’

Type file path to write (extension ‘.h5’) (empty value allowed)

Additional restrictions

• This tally is only compatible with SCE physics.

14.6.9 [TALLY][DIAGNOSTIC=source]

This diagnostic tally is provided to calculate the source density binned into spatial cells. It also calculates the particle
source density (i.e., binning 𝑛(𝑟⃗) rather than 𝑤𝑛(𝑟⃗)) to assist in the construction of biased sources.

Parameters

x
Mesh tally coordinates along the X axis.

Type list of two or more monotonically increasing floats

Units cm

y
Mesh tally coordinates along the Y axis.

Type list of two or more monotonically increasing floats

Units cm

z
Mesh tally coordinates along the Z axis.

Type list of two or more monotonically increasing floats

Units cm

silo_output
Path to Silo output file (no extension).

Default ‘source’

Type string

14.6.10 [TALLY][DIAGNOSTIC=history]

The history diagnostic tallies every event in a particle’s lifetime. Currently, all particle histories are tallied, and only
one processor writes the histories.

14.6. [TALLY] 83
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Parameters

history_hdf5_output / output
Destination file for history events.

Default ‘history.h5’

Type file path to write (extension ‘.h5’) (empty value allowed)

node
Node from which to save history events.

Default 0

Type non-negative integer

14.6.11 [TALLY][DIAGNOSTIC=debug]

The debug diagnostic currently records the number of events per particle history, but it will be extended to provide
other useful high-level debug information. The output data is written to the omnibus output XML file and converted
in the postprocessor.

14.6.12 [TALLY][SENSITIVITY]

The sensitivity tally allows sensitivities to cross sections and other input to be calculated using advanced methods.

Note: Currently sensitivity tallies can only be run in serial mode.

Parameters

neutron_bins / nbins
Energy bin boundaries for neutrons.

Default []

Type nonnegative floats in decreasing order

Units eV

method / cet
Sensitivity coefficient calculation mode.

Default ‘ce_tsunami’

Type ‘ce_tsunami’, ‘clutch’, or ‘ifp’

latent_generations / cfp
Number of latent generations for IFP/F*(r) calculation.

Default 1

Type positive integer

Applicability when S/U method uses an F* mesh.

84 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Advanced parameters

These parameters are not meant for typical use.

sensitivity_output
Destination path for the sensitivity tally output file (.sdf).

Type file path to write (extension ‘.sdf’)

Additional defaults

• Default the SDF output path to INPUT.sdf.

Additional restrictions

• This tally is only compatible with SCE physics.

14.7 [SOURCE]

The source database specifies the source particle distribution for a fixed-source problem. Currently, only separable,
uniform sources are supported. All source strengths are normalized to unity. To adjust the effective strength of a
source (e.g. to set a multiplicative counts-per-second factor), modify the normalization property of the tallies.

14.8 [SOURCE=separable]

14.8.1 Sub-databases

Name and type Frequency
shape = { box, cylinder, cylindershell, sphere, sphereshell, point} Exactly once
energy = { histogram, mono, lines, watt} Exactly once
angle = { isotropic, mono} Exactly once

14.8.2 Parameters

name
Short title or label for the source.

Default ‘source’

Type string

description / desc
Optional longer descriptive string.

Default

‘’

Type string

strength / q
Source strength.

14.7. [SOURCE] 85
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Default 1.0

Type positive real number

Units particles/s

particle_type / pt
Particle type to emit.

Type particle type (‘p’,’n’,’np’,’neutron’,’photon’)

fissionable_only / fis
Whether particles are only emitted in fissionable regions.

Type boolean

14.8.3 Additional defaults

• When running an eigenvalue problem, Default to an isotropic distribution and a Watt (U-235) energy spectrum,
and only emit particles inside of fissionable cells.

14.8.4 [SOURCE=separable][SHAPE=box]

Parameters

xmin
Minimum x-coordinate of box source.

Type real number

xmax
Maximum x-coordinate of box source.

Type real number

ymin
Minimum y-coordinate of box source.

Type real number

ymax
Maximum y-coordinate of box source.

Type real number

zmin
Minimum z-coordinate of box source.

Type real number

zmax
Maximum z-coordinate of box source.

Type real number

Commands

These commands generate one or more parameters.

86 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

box
Expand into parameters xmin, xmax, ymin, ymax, zmin, zmax.

14.8.5 [SOURCE=separable][SHAPE=cylinder]

Parameters

axis
Axis along regular cylinder source.

Type axis (‘x’,’y’,’z’)

origin_x / xo
X-coordinate of regular cylinder source origin.

Type real number

origin_y / yo
Y-coordinate of regular cylinder source origin.

Type real number

origin_z / zo
Z-coordinate of regular cylinder source origin.

Type real number

radius / r
Radius of regular cylinder source.

Type real number

height / h
Height of regular cylinder source.

Type real number

Commands

These commands generate one or more parameters.

origin
Expand into parameters origin_x, origin_y, origin_z.

14.8.6 [SOURCE=separable][SHAPE=cylindershell]

Parameters

axis
Axis along regular cylinder shell source.

Type axis (‘x’,’y’,’z’)

origin_x / xo
X-coordinate of regular cylinder shell source origin.

Type real number

14.8. [SOURCE=separable] 87
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

origin_y / yo
Y-coordinate of regular cylinder shell source origin.

Type real number

origin_z / zo
Z-coordinate of regular cylinder shell source origin.

Type real number

inner_radius / ir
Inner radius of regular cylinder shell source.

Type real number

outer_radius / or
Outer radius of regular cylinder shell source.

Type real number

height / h
Height of regular cylinder shell source.

Type real number

Commands

These commands generate one or more parameters.

origin
Expand into parameters origin_x, origin_y, origin_z.

14.8.7 [SOURCE=separable][SHAPE=sphere]

Parameters

origin_x / xo
X-coordinate of sphere source origin.

Type real number

origin_y / yo
Y-coordinate of sphere source origin.

Type real number

origin_z / zo
Z-coordinate of sphere source origin.

Type real number

radius / r
Radius of sphere source.

Type real number

88 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Commands

These commands generate one or more parameters.

origin
Expand into parameters origin_x, origin_y, origin_z.

14.8.8 [SOURCE=separable][SHAPE=sphereshell]

Parameters

origin_x / xo
X-coordinate of sphere shell source origin.

Type real number

origin_y / yo
Y-coordinate of sphere shell source origin.

Type real number

origin_z / zo
Z-coordinate of sphere shell source origin.

Type real number

inner_radius / ir
Inner radius of sphere shell source.

Type real number

outer_radius / or
Outer radius of sphere shell source.

Type real number

Commands

These commands generate one or more parameters.

origin
Expand into parameters origin_x, origin_y, origin_z.

14.8.9 [SOURCE=separable][SHAPE=point]

Parameters

x
X position of point source.

Type real number

y
Y position of point source.

Type real number

z
Z position of point source.

14.8. [SOURCE=separable] 89
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Type real number

Commands

These commands generate one or more parameters.

point
Expand into parameters x, y, z.

14.8.10 [SOURCE=separable][ENERGY=histogram]

Parameters

energy / e
Histogram lower energy bin bounds.

Type list of non-negative monotonically increasing floats

Units eV

strength / q
Average source strength inside each bin.

Type list of non-negative floats

Additional restrictions

• Histogram source must have one more energy value than strength.

Advanced

The following parameters are renamed or reorganized when being output to the Omnibus XML input file:

Parameter Renamed subdatabase Renamed parameter
energy domain
strength range

14.8.11 [SOURCE=separable][ENERGY=mono]

Parameters

energy / e
Source energy.

Type positive real number

14.8.12 [SOURCE=separable][ENERGY=lines]

Parameters

energy / e
Individual line energies.

90 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Type list of positive floats

Units eV

strength / q
Strength corresponding to each source.

Type list of non-negative floats

Additional restrictions

• Line source must have the same number of energy and strength.

14.8.13 [SOURCE=separable][ENERGY=watt]

Parameters

a
Value for the ‘a’ constant in Watt equation.

Type positive real number

Units MeV

b
Value for the ‘b’ constant in Watt equation.

Type positive real number

Units 1/MeV

Additional defaults

• Watt spectrum defaults to a=0.965 and b=2.29 (U-235 fission).

14.8.14 [SOURCE=separable][ANGLE=isotropic]

14.8.15 [SOURCE=separable][ANGLE=mono]

Parameters

direction / dir
Direction source particles are emitted.

Type xyz coordinates

14.9 [SOURCE=fissionmesh]

14.9.1 Sub-databases

Name and type Frequency
energy = { histogram, mono, lines, watt} Exactly once

14.9. [SOURCE=fissionmesh] 91
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

14.9.2 Parameters

name
Short title or label for the source.

Default ‘source’

Type string

description / desc
Optional longer descriptive string.

Default

‘’

Type string

strength / q
Source strength.

Default 1.0

Type positive real number

Units particles/s

particle_type / pt
Particle type to emit.

Type particle type (‘p’,’n’,’np’,’neutron’,’photon’)

fissionable_only / fis
Whether particles are only emitted in fissionable regions.

Type boolean

mesh_tally_input / input
Name of file containing fission source distribution.

Type file path for reading (extension ‘.h5’)

mesh_tally_name
Name of fission source tally in file.

Type string

14.9.3 Additional defaults

• Default to an isotropic distribution and a Watt (U-235) energy spectrum, and only emit particles inside of fis-
sionable cells.

14.9.4 [SOURCE=fissionmesh][ENERGY=histogram]

Parameters

energy / e
Histogram lower energy bin bounds.

Type list of non-negative monotonically increasing floats

Units eV

92 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

strength / q
Average source strength inside each bin.

Type list of non-negative floats

Additional restrictions

• Histogram source must have one more energy value than strength.

Advanced

The following parameters are renamed or reorganized when being output to the Omnibus XML input file:

Parameter Renamed subdatabase Renamed parameter
energy domain
strength range

14.9.5 [SOURCE=fissionmesh][ENERGY=mono]

Parameters

energy / e
Source energy.

Type positive real number

14.9.6 [SOURCE=fissionmesh][ENERGY=lines]

Parameters

energy / e
Individual line energies.

Type list of positive floats

Units eV

strength / q
Strength corresponding to each source.

Type list of non-negative floats

Additional restrictions

• Line source must have the same number of energy and strength.

14.9.7 [SOURCE=fissionmesh][ENERGY=watt]

Parameters

a
Value for the ‘a’ constant in Watt equation.

14.9. [SOURCE=fissionmesh] 93
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Type positive real number

Units MeV

b
Value for the ‘b’ constant in Watt equation.

Type positive real number

Units 1/MeV

Additional defaults

• Watt spectrum defaults to a=0.965 and b=2.29 (U-235 fission).

14.10 [SOURCE=mesh]

14.10.1 Parameters

name
Short title or label for the source.

Default ‘source’

Type string

description / desc
Optional longer descriptive string.

Default

‘’

Type string

strength / q
Source strength.

Default 1.0

Type positive real number

Units particles/s

particle_type / pt
Particle type to emit.

Type particle type (‘p’,’n’,’np’,’neutron’,’photon’)

fissionable_only / fis
Whether particles are only emitted in fissionable regions.

Type boolean

mesh_source_input / input
Name of file containing mesh source distribution.

Type file path for reading (extension ‘.h5’)

94 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

14.11 [GEOMETRY]

Shift provides adapters for several geometry types.

Note: For most geometry types, Shift allows cell volumes to be manually input with the “volumes” and “vol-
ume_cells” keywords:

volumes 1.0 2.34 0.5
volume_cells 1 200 15

Here the cells are the “cell labels” (e.g. the cell card IDs in MCNP) and the volumes are the corresponding volumes
in cm^3.

14.12 [GEOMETRY=mcnp]

MCNP support is provided through the Lava plugin, developed at ORNL by Scott Mosher. Lava is a C interface to
MCNP routines. It requires MCNP to generate a run tape from an input file. Omnibus will automatically execute
MCNP and generate the run tape.

Note: If using Shift cell tallies with MCNP geometry, the user must include a cell tally or input volumes for desired
cells in the MCNP input to for volumes to automatically be propagated into Shift.

14.12.1 Parameters

volumes
Provide or override volumes for cells in the geometry.

Default []

Type list of positive floats

Units cc

volume_cells
Cell labels corresponding to the given volume overrides.

Default []

Type list of integers

14.12.2 Advanced parameters

These parameters are not meant for typical use.

runtpe_path
Path to the MCNP runtpe file.

Type file path for reading

14.11. [GEOMETRY] 95
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

14.12.3 Commands

These commands generate one or more parameters.

input
Generate an MCNP runtpe file and set runtpe_path.

14.13 [GEOMETRY=scale]

The SCALE geometry supports reading directly from a SCALE input file that includes a KENO VI geometry. Con-
tact Rob Lefebvre <lefebvrera@ornl.gov> for the current status of the Atlas geometry package that underlies KENO
support. As of December 2014, the following capabilities are not supported:

• Reflecting boundaries

• Hexagonal arrays

14.13.1 Parameters

input
Path to the KENO VI input file.

Type file path for reading (extension ‘.inp’)

volumes
Provide or override volumes for cells in the geometry.

Default []

Type list of positive floats

Units cc

volume_cells
Cell labels corresponding to the given volume overrides.

Default []

Type list of integers

14.14 [GEOMETRY=rtk]

The RTK geometry implemented by Omnibus reads a geometry from an XML input file. In general, the Insilico
front-end should be used for creating reactors with the RTK geometry.

14.14.1 Parameters

input
Path to the RTK geometry xml file.

Type file path for reading (extension ‘.xml’)

96 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000

mailto:lefebvrera@ornl.gov


Exnihilo Documentation, Release 5.3 (Dev)

14.15 [GEOMETRY=mesh]

14.15.1 Parameters

input_type
Where the mesh geometry is defined.

Default ‘hdf5’

Type ‘hdf5’, or ‘manual’

input
Path to the mesh geometry hdf5 file.

Type file path for reading (extension ‘.h5’)

Applicability when ‘input_type’ is ‘hdf5’.

matids
List of material IDs for each mesh cell.

Type list of nonnegative integers

Applicability when ‘input_type’ is ‘manual’.

x_planes
Mesh coordinates along the X axis.

Type list of two or more monotonically increasing floats

Units cm

Applicability when ‘input_type’ is ‘manual’.

y_planes
Mesh coordinates along the Y axis.

Type list of two or more monotonically increasing floats

Units cm

Applicability when ‘input_type’ is ‘manual’.

z_planes
Mesh coordinates along the Z axis.

Type list of two or more monotonically increasing floats

Units cm

Applicability when ‘input_type’ is ‘manual’.

14.15.2 Additional restrictions

• If more than 1000 mesh cells are present, then HDF5 input must be used.

14.16 [COMP]

The [COMP] block allows custom definition of compositions. The matids in each block must correspond to the matids
in the problem geometry.

14.15. [GEOMETRY=mesh] 97
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

14.16.1 Sub-databases

Name and type Frequency

material
At least one

14.16.2 [COMP][MATERIAL]

Parameters

name
Label for the material.

Type string

matid
Internal matid number.

The matid is a [0,N)-indexed internal numbering system. The matids used by Shift typically differ from the
material names used in the problem physics input (for example, m10 in an MCNP input deck might correspond
to matid=1). Currently, the only way to guarantee this corresponds to a particular material in the geometry input
is to use an input that specifies matids explicitly (RTK or mesh geometry). However, by viewing the matid-to-
label mapping given in an Omnibus postprocess output for a SCALE or MCNP input geometry, it is possible to
figure out for a particular problem what matid corresponds to what material.

Type non-negative integer

temperature / tmp
Material temperature.

Type non-negative real number

Units K

deplete / depl
Whether the material is depletable.

Default False

Type boolean

fission / fiss
Whether the material is fissionable.

Default False

Type boolean

zaid
Element IDs (MZZZAAA) in this material.

Type list of positive integers

nd
Number densities of each nuclide.

Type list of positive floats

Units atoms/(b-cm)

98 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Advanced

The following parameters are renamed or reorganized when being output to the Omnibus XML input file:

Parameter Renamed subdatabase Renamed parameter
nd num_densities
zaid elements

14.17 [PHYSICS]

Omnibus supports several coupled-physics packages.

14.18 [PHYSICS=mg]

The simple multigroup physics package allows user-input 𝑃0 cross sections for test problems such as C5G7.

14.18.1 Sub-databases

Name and type Frequency

xs Zero or more

14.18.2 Parameters

name
Label for the physics.

Default ‘mg’

Type string

mg_lib_path
MG library name or path to MG library file.

Default

‘’

Type string

downscatter
Indicates whether this problem has downscatter only.

Default False

Type boolean

pn_order
Scattering order of problem.

Default 0

Type zero or positive odd integer

14.17. [PHYSICS] 99
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

comp_hdf5_output / comp_out
Write compositions to the given HDF5 file, or skip if empty.

Default ‘compositions.h5’

Type file path to write (extension ‘.h5’) (empty value allowed)

num_groups
Number of energy groups.

Type integer

Applicability when Using manual cross section input.

neutron_bnd
Neutron group boundaries.

Default []

Type positive floats in decreasing order

Applicability when Using manual cross section input.

photon_bnd
Photon group boundaries.

Default []

Type positive floats in decreasing order

Applicability when Using manual cross section input.

14.18.3 Additional restrictions

• XS database specification and ‘mg_lib_path’ are mutally exclusive.

• Only Pn order = 0 is currently implemented.

14.18.4 Advanced

The following parameters are renamed or reorganized when being output to the Omnibus XML input file:

Parameter Renamed subdatabase Renamed parameter
downscatter db downscatter
mg_lib_path db xs_library
neutron_bnd db neutron_bnd
num_groups db num_groups
photon_bnd db photon_bnd
pn_order db Pn_order

14.18.5 [PHYSICS=mg][XS]

This subdatabase specifies all cross sections for a single material. If the material is fissionable, all of fission, nu,
and chi must be present.

100 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Parameters

name
Label for the material.

Default ‘untitled’

Type string

matid
Material ID.

Type non-negative integer

total
Total cross section by group.

Type list of non-negative floats

s0
Isotropic scattering cross section.

Type list of non-negative floats

fission
Fission cross section.

Default []

Type list of non-negative floats

nu
Neutron production.

Default []

Type list of non-negative floats

chi
Fission spectrum.

Default []

Type list of non-negative floats

14.19 [PHYSICS=sce]

SCE is the new interface to SCALE continuous energy physics.

14.19.1 Sub-databases

Name and type Frequency
splice = { ampx} Zero or more

14.19.2 Parameters

name
Label for the physics.

14.19. [PHYSICS=sce] 101
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Default ‘sce’

Type string

ce_lib_path
Path to SCALE CE Library XML file.

Type file path for reading (extension ‘.xml’)

ce_cache_path
HDF5 file path for caching CE data for this problem.

Default

‘’

Type file path to read or modify (extension ‘.h5’) (empty value allowed)

mode
Particle transport mode.

Type particle type (‘p’,’n’,’np’,’neutron’,’photon’)

comp_hdf5_output / comp_out
Write compositions to the given HDF5 file, or skip if empty.

Default ‘compositions.h5’

Type file path to write (extension ‘.h5’) (empty value allowed)

use_probability_tables / ptab
Use probability table method for unresolved resonances.

Default True

Type boolean

otf_elastic_scattering
Use on-the-fly elastic scattering rather than table lookups.

Default False

Type boolean

n_energy_min / n_emin
Minimum global neutron energy cutoff for cross sections.

Default 1e-05

Type positive real number

Units eV

Applicability when ‘mode’ is ‘np’ or ‘n’.

n_energy_max / n_emax
Maximum global neutron_energy cutoff for cross sections.

Default 20000000.0

Type positive real number

Units eV

Applicability when ‘mode’ is ‘np’ or ‘n’.

p_energy_min / p_emin
Minimum global photon energy cutoff for cross sections.

102 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Default 10000.0

Type positive real number

Units eV

Applicability when ‘mode’ is ‘np’ or ‘p’.

p_energy_max / p_emax
Maximum global photon energy cutoff for cross sections.

Default 25000000.0

Type positive real number

Units eV

Applicability when ‘mode’ is ‘np’ or ‘p’.

thermal_energy_cutoff
Thermalization energy cutoff for scattering kernels.

Default 10.0

Type positive real number

Units eV

orig_zaid_n
Replace CE data for these nuclides in problem materials.

The ZAID remapping options allow a ZAID present in the problem input to be replaced with a different ZAID.
These options are most useful when entered in column input form:

orig_zaid_n : subs_zaid_n
1001 8001001
11022 11023

This is usually necessary when nuclide metadata is not available in the SCALE standard composition library.

Default []

Type list of nuclide specifier (e.g. U-235, 92235, u235, u-235m1)

subs_zaid_n
Substitute ZAID corresponding to ‘orig_zaid_n’.

Default []

Type list of nuclide specifier (e.g. U-235, 92235, u235, u-235m1)

orig_zaid_p
Replace photon CE data for these nuclides in problem materials.

Default []

Type list of nuclide specifier (e.g. U-235, 92235, u235, u-235m1)

subs_zaid_p
Substitute ZAID corresponding to ‘orig_zaid_p’.

Default []

Type list of nuclide specifier (e.g. U-235, 92235, u235, u-235m1)

14.19. [PHYSICS=sce] 103
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

14.19.3 Advanced parameters

These parameters are not meant for typical use.

use_unionized_energy_grid
Create unionized energy grid.

Default False

Type boolean

load_gamma_production_data
Load the gamma production data.

Type boolean

use_collision_probabilities
Use SCALE pre-calculated reaction probabilities.

Default False

Type boolean

load_nubar
Load average neutron production data.

Default True

Type boolean

reactions
Reactions to load (AMPX_MT values).

Default []

Type list of MT number or name (e.g. N_GAMMA, 102)

14.19.4 Commands

These commands generate one or more parameters.

energy_limits
Expand into parameters n_energy_min, n_energy_max.

ce_lib
Set ce_lib to the given value using SCALE DATA resolution.

The SCALE FileNameAliases.txt file is used to resolve the data files. Current options are:

Path Description
ce_v7.0_endf.xml ENDF/B-VII.0
ce_v7.xml “
ce_v7_endf.xml “
ce_v7.1_endf.xml ENDF/B-VII.1
ce.xml “

ampx_kerma
Load KERMA factors from an AMPX library.

104 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

14.19.5 Additional defaults

• Default mode to ‘n’ for kcode, or based on sources if present. .

• For particle mode np, ‘load_gamma_production_data’ defaults to True

For particle mode _default, ‘load_gamma_production_data’ defaults to False.

14.19.6 Additional restrictions

• Kcode problems must be run in mode ‘n’.

14.19.7 Advanced

The following parameters are renamed or reorganized when being output to the Omnibus XML input file:

Parameter Renamed subdatabase Renamed parameter
ce_cache_path db ce_cache_path
ce_lib_path db:ce ce_lib_path
load_gamma_production_data db:ce gamma_production
load_nubar db:ce nubar
mode db mode
n_energy_max db:ce nemax
n_energy_min db:ce nemin
orig_zaid_n db:ce orig_zaid_n
orig_zaid_p db:ce orig_zaid_p
p_energy_max db:ce pemax
p_energy_min db:ce pemin
reactions db:ce reactions
subs_zaid_n db:ce subs_zaid_n
subs_zaid_p db:ce subs_zaid_p
thermal_energy_cutoff db:ce ethermal
use_collision_probabilities db:ce collision_probabilities
use_probability_tables db:ce probability_tables
use_unionized_energy_grid db:ce unionize_energy

14.19.8 [PHYSICS=sce][SPLICE=ampx]

Parameters

mg_lib_path
Path to AMPX library to load data.

Type file path for reading

orig_zaid_n
Replace MG data for these nuclides in problem materials.

Default []

Type list of nuclide specifier (e.g. U-235, 92235, u235, u-235m1)

subs_zaid_n
Substitute ZAID corresponding to ‘orig_zaid_n’.

Default []

14.19. [PHYSICS=sce] 105
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Type list of nuclide specifier (e.g. U-235, 92235, u235, u-235m1)

orig_zaid_p
Replace photon MG data for these nuclides in problem materials.

Default []

Type list of nuclide specifier (e.g. U-235, 92235, u235, u-235m1)

subs_zaid_p
Substitute ZAID corresponding to ‘orig_zaid_p’.

Default []

Type list of nuclide specifier (e.g. U-235, 92235, u235, u-235m1)

Advanced parameters

These parameters are not meant for typical use.

reactions
Multigroup reactions to splice into the CE data (AMPX_MT values).

Default []

Type list of MT number or name (e.g. N_GAMMA, 102)

Commands

These commands generate one or more parameters.

mg_lib
Set mg_lib to the given value using SCALE DATA resolution.

Advanced

The following parameters are renamed or reorganized when being output to the Omnibus XML input file:

Parameter Renamed subdatabase Renamed parameter
mg_lib_path xs_library

14.20 [PHYSICS=smg]

The SCALE MG physics package by default uses SCALE to calculate infinite homogeneous medium cross sections
for all materials. No self-shielding is used, so results will generally not have good accuracy. The default cross section
processing is primarily intended for generating deterministic solutions for hybrid calculations.

14.20.1 Parameters

name
Label for the physics.

Default ‘smg’

Type string

106 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

mg_lib_path
MG Library file.

Type file path for reading

downscatter
Indicates whether this problem has downscatter only.

Default False

Type boolean

pn_order
Scattering order of problem.

Default 0

Type zero or positive odd integer

comp_hdf5_output / comp_out
Write compositions to the given HDF5 file, or skip if empty.

Default ‘compositions.h5’

Type file path to write (extension ‘.h5’) (empty value allowed)

14.20.2 Commands

These commands generate one or more parameters.

mg_lib
Set mg_lib to the given value using SCALE DATA resolution.

14.20.3 Advanced

The following parameters are renamed or reorganized when being output to the Omnibus XML input file:

Parameter Renamed subdatabase Renamed parameter
downscatter db downscatter
mg_lib_path db xs_library
pn_order db Pn_order

14.21 [DEPLETION]

Omnibus couples Shift and ORIGEN, a depletion/transmutation analysis code, using ORIGEN’s new C++ API. This
new in-memory API avoids the prohibitive cost (on HPC systems) of writing to disk between transport and depletion
steps and also enables each depletion step to be performed on each depletable region in parallel. Shift uses the same
approach as VESTA to obtain microscopic per-nuclide reaction rates. This approach tallies ultra-fine-group fluxes in
each depletion region and then uses these fluxes to collapse the microscopic CE cross sections into one-group reaction
rates. Shift then sends these reaction rates to ORIGEN for a depletion calculation.

Currently, Shift uses constant-power depletion with either forward Euler or a “middlestep” method. In order to opti-
mize the parallel efficiency of the depletion calculation, the depletable regions on each block are distributed amongst
the available processors in order to minimize the number of depletion solves performed on each core. After every core
has calculated the new concentrations for its depletion regions, the results are broadcast to every other core on the
block.

14.21. [DEPLETION] 107
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

14.21.1 Parameters

deplete_cells / cells
Labels of cells to deplete instead of all fissionable cells.

By default, when depletion is enabled, all “depletable” cells will be tracked and depleted. (Depletable cells
correspond to materials with fissionable materials, or if a [COMP] block is used, materials with the depletable
flag set.) This parameter overrides this default: cells with the listed labels will have their materials depleted.

Note: When an MCNP geometry is used, this command additionaly turns multiple cells with the same material
into “unique” materials.

Default []

Type list of integers

boron_level
Boron level for a given time interval.

If given, the boron_level parameter must have the same length as burn_time: each value corresponds to
the boron level for a given time step.

Default []

Type list of positive floats

borated_cells / mod_cells
Cells containing borated moderator.

Default []

Type list of integers

tracking_nuclides
Nuclides that will be tracked for depletion.

Default []

Type list of nuclides

verbose
Flag to print depletion banner following a depletion calculation.

Default True

Type boolean

hdf5_output / depl_out
Name of the output file to write, or blank to disable output.

Default ‘depletion.h5’

Type file path to write (extension ‘.h5’) (empty value allowed)

write_predictor_data / write_p
Flag to write predictor data to an HDF5-formatted output file.

Default False

Type boolean

Applicability when writing HDF5 output.

write_xs
Whether to write the collapsed origen XS to the HDF5 file.

108 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Default False

Type boolean

Applicability when writing HDF5 output.

max_step
Maximum time before automatically increasing the number of steps.

Default 400.0

Type non-negative real number

Units days

burn_time / burn
Burnup times for each input step.

Type list of non-negative floats

Units days

decay_time / decay
Decay times for each input step.

Default []

Type list of non-negative floats

Units days

num_steps
Number of steps to take for each depletion entry.

The num_steps parameter must have the same length as the max_step, burn_time, and decay_time.
It is the number of constant-flux calculations per entry. Increasing the number will increase the accuracy of
the answer (by having better approximations of the depleted concentrations during the transport step) but will
increase the computational cost (because more transport calculations must be performed).

Default []

Type list of positive integers

constant_power_per_step / power
Constant power to be applied per burnup step.

Default []

Type list of non-negative floats

Units MW

constant_flux_per_step / flux
Constant flux to be applied per burnup step.

Default []

Type list of non-negative floats

Units n/cm^2

origen_library
Filepath to an ORIGEN library file.

Default u’/usr/local/scale/data/origen_library/pwr.rev02.orglib’

Type file path for reading (extension ‘.orglib’)

14.21. [DEPLETION] 109
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

max_burn_substep_size
Maximum substep size for an ORIGEN time step of non-zero power/flux.

Default 40.0

Type non-negative real number

Units days

max_decay_substep_size
Maximum substep size for an ORIGEN time step of zero power/flux.

Default 75.0

Type non-negative real number

Units days

nuclide_filter_type
How to filter nuclides for transport calculations.

Default ‘capture’

Type ‘none’, ‘capture’, or ‘number_density’

nuclide_filter_threshold
Threshold at which nuclides below are removed from transport.

Default 0.05

Type non-negative real number

Applicability when ‘nuclide_filter_type’ is ‘capture’ or ‘number_density’.

depletion_solver
Depletion solver type.

Default ‘cram’

Type ‘cram’, or ‘matrex’

cram_order
Order of the CRAM depletion solver.

Default 16

Type positive integer

Applicability when ‘depletion_solver’ is ‘cram’.

cram_internal_substeps
Number of internal substeps in the CRAM depletion solver.

Default 1

Type positive integer

Applicability when ‘depletion_solver’ is ‘cram’.

14.21.2 Commands

These commands generate one or more parameters.

tracking_set
append a set of TRITON nuclides to tracking_nuclides to track (none, addnux1, addnux-2, addnux2, addnux3,
addnux4, all).

110 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

The tracking_set command exposes the TRITON addnux option to the user.

tracking_set none adds no extra nuclides to track (the default).

tracking_set addnux1 corresponds to addnux=1 and adds:

U-234, U-235, U-236, U-238, Np-237, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Am-241, Am-242,
Am-243, Cm-242, Cm-243

tracking_set addnux-2 corresponds to addnux=-2 and adds the above nuclides as well as:

H-1, B-10, B-11, N-14, O-16, Kr-83, Zr-94, Nb-93, Mo-95, Tc-99, Ru-106, Rh-103, Rh-105, Ag-
109, Sn-126, I-135, Xe-131, Xe-135, Cs-133, Cs-134, Cs-135, Cs-137, Ce-144, Pr-143, Nd-143,
Nd-145, Nd-146, Nd-147, Nd-148, Pm-147, Pm-148, Pm-149, Sm-147, Sm-149, Sm-150, Sm-151,
Sm-152, Eu-151, Eu-153, Eu-154, Eu-155, Gd-152, Gd-154, Gd-155, Gd-156, Gd-157, Gd-158,
Gd-160, Cm-244

tracking_set addnux2 corresponds to addnux=2 and adds the above nuclides as well as:

Zr-91, Zr-93, Zr-95, Zr-96, Nb-95, Mo-97, Mo-98, Mo-99, Mo-100, Ru-101, Ru-102, Ru-103, Ru-
104, Pd-105, Pd-107, Pd-108, Cd-113, In-115, I-127, I-129, Xe-133, Ba-140, La-139, Ce-141, Ce-
142, Ce-143, Pr-141, Nd-144, Sm-153, Eu-156

tracking_set addnux3 corresponds to addnux=3 and adds the above nuclides as well as:

Ge-72, Ge-73, Ge-74, Ge-76, As-75, Se-76, Se-77, Se-78, Se-80, Se-82, Br-79, Br-81, Kr-80, Kr-82,
Kr-84, Kr-85, Kr-86, Rb-85, Rb-86, Rb-87, Sr-84, Sr-86, Sr-87, Sr-88, Sr-89, Sr-90, Y-89, Y-90,
Y-91, Zr-90, Zr-92, Nb-94, Mo-92, Mo-94, Mo-96, Ru-96, Ru-98, Ru-99, Ru-100, Ru-105, Pd-102,
Pd-104, Pd-106, Pd-110, Ag-107, Ag-111, Cd-106, Cd-108, Cd-110, Cd-111, Cd-112, Cd-114, Cd-
115m, Cd-116, In-113, Sn-112, Sn-114, Sn-115, Sn-116, Sn-117, Sn-118, Sn-119, Sn-120, Sn-122,
Sn-123, Sn-124, Sn-125, Sb-121, Sb-123, Sb-124, Sb-125, Sb-126, Te-120, Te-122, Te-123, Te-124,
Te-125, Te-126, Te-127m, Te-128, Te-129m, Te-130, Te-132, I-130, I-131, Xe-124, Xe-126, Xe-
128, Xe-129, Xe-130, Xe-132, Xe-134, Xe-136, Cs-136, Ba-134, Ba-135, Ba-136, Ba-137, Ba-138,
La-140, Ce-140, Pr-142, Nd-142, Nd-150, Pm-151, Sm-144, Sm-148, Sm-154, Eu-152, Eu-157, Tb-
159, Tb-160, Dy-160, Dy-161, Dy-162, Dy-163, Dy-164, Ho-165, Er-166, Er-167, Lu-175, Lu-176,
Ta-181, W-182, W-183, W-184, W-186, Re-185, Re-187, Au-197, Th-230, Th-232, Pa-231, Pa-233,
U-232, U-233

tracking_set addnux4 corresponds to addnux=4 and adds the above nuclides as well as:

H-2, H-3, He-3, He-4, Li-6, Li-7, Be-7, Be-9, N-15, O-17, F-19, Na-23, Mg-24, Mg-25, Mg-26,
Al-27, Si-28, Si-29, Si-30, P-31, S-32, S-33, S-34, S-36, Cl-35, Cl-37, Ar-36, Ar-38, Ar-40, Ka-
39, Ka-40, Ka-41, Ca-40, Ca-42, Ca-43, Ca-44, Ca-46, Ca-48, Sc-45, Ti-46, Ti-47, Ti-48, Ti-49,
Ti-50, Cr-50, Cr-52, Cr-53, Cr-54, Mn-55, Fe-54, Fe-56, Fe-57, Fe-58, Co-58m, Co-58, Co-59,
Ni-58, Ni-59, Ni-60, Ni-61, Ni-62, Ni-64, Cu-63, Cu-65, Ga-69, Ga-71, Ge-70, As-74, Se-74, Se-
79, Kr-78, Ag-110m, Sn-113, Xe-123, Ba-130, Ba-132, Ba-133, La-138, Ce-136, Ce-138, Ce-139,
Pm-148m, Gd-153, Dy-156, Dy-158, Ho-166m, Er-162, Er-164, Er-168, Er-170, Hf-174, Hf-176,
Hf-177, Hf-178, Hf-179, Hf-180, Ta-182, Ir-191, Ir-193, Hg-196, Hg-198, Hg-199, Hg-200, Hg-
201, Hg-202, Hg-204, Pb-204, Pb-206, Pb-207, Pb-208, Bi-209, Ra-223, Ra-224, Ra-225, Ra-226,
Ac-225, Ac-226, Ac-227, Th-227, Th-228, Th-229, Th-233, Th-234, Pa-232, U-237, U-239, U-240,
U-241, Np-235, Np-236, Np-238, Np-239, Pu-236, Pu-237, Pu-243, Pu-244, Pu-246, Am-242m,
Am-244, Am-244m, Cm-241, Cm-245, Cm-246, Cm-247, Cm-248, Cm-249, Cm-250, Bk-249, Bk-
250, Cf-249, Cf-250, Cf-251, Cf-252, Cf-253, Cf-254, Es-253, Es-254, Es-255

tracking_set all contains all the nuclides available in ORIGEN, which are the above nuclides as well as:

H-4, He-5, He-6, He-8, Li-8, Li-9, Be-8, Be-10, Be-11, Be-12, B-12, C-0, C-12, N-13, N-16, O-18,
O-19, F-20, Ne-20, Ne-21, Ne-22, Ne-23, Na-22, Na-24, Na-24m, Na-25, Mg-27, Mg-28, Al-26,
Al-28, Al-29, Al-30, Si-31, Si-32, P-32, P-33, P-34, S-25, S-35, S-37, Cl-36, Cl-38, Cl-38m, Ar-37,
Ar-39, Ar-41, Ar-42, Ka-42, Ka-43, Ka-44, Ca-41, Ca-45, Ca-47, Ca-49, Sc-44, Sc-44m, Sc-45m,

14.21. [DEPLETION] 111
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Sc-46, Sc-46m, Sc-47, Sc-48, Sc-49, Sc-50, Ti-44, Ti-45, Ti-51, V-48, V-49, V-50, V-51, V-52, V-53,
V-54, Cr-48, Cr-49, Cr-51, Cr-55, Cr-66, Cr-67, Mn-52, Mn-53, Mn-54, Mn-56, Mn-57, Mn-58, Mn-
66, Mn-67, Mn-68, Mn-69, Fe-55, Fe-59, Fe-60, Fe-65, Fe-66, Fe-67, Fe-68, Fe-69, Fe-70, Fe-71,
Fe-72, Co-55, Co-56, Co-57, Co-60, Co-60m, Co-61, Co-62, Co-65, Co-66, Co-67, Co-68, Co-69,
Co-70, Co-71, Co-72, Co-73, Co-74, Co-75, Ni-56, Ni-57, Ni-63, Ni-65, Ni-66, Ni-67, Ni-68, Ni-69,
Ni-70, Ni-71, Ni-72, Ni-73, Ni-74, Ni-75, Ni-76, Ni-77, Ni-78, Cu-62, Cu-64, Cu-66, Cu-67, Cu-68,
Cu-68m, Cu-69, Cu-70, Cu-70m, Cu-71, Cu-72, Cu-73, Cu-74, Cu-75, Cu-76, Cu-77, Cu-78, Cu-79,
Cu-80, Cu-81, Zn-63, Zn-64, Zn-65, Zn-66, Zn-67, Zn-68, Zn-69, Zn-69m, Zn-70, Zn-71, Zn-71m,
Zn-72, Zn-73, Zn-74, Zn-75, Zn-76, Zn-77, Zn-78, Zn-79, Zn-80, Zn-81, Zn-82, Zn-83, Ga-66, Ga-
67, Ga-68, Ga-70, Ga-72, Ga-72m, Ga-73, Ga-74, Ga-74m, Ga-75, Ga-76, Ga-77, Ga-78, Ga-79,
Ga-80, Ga-81, Ga-82, Ga-83, Ga-84, Ga-85, Ga-86, Ge-66, Ge-67, Ge-68, Ge-69, Ge-71, Ge-71m,
Ge-73m, Ge-75, Ge-75m, Ge-77, Ge-77m, Ge-78, Ge-79, Ge-79m, Ge-80, Ge-81m, Ge-81, Ge-82,
Ge-83, Ge-84, Ge-85, Ge-86, Ge-87, Ge-88, Ge-89, As-69, As-71, As-72, As-73, As-75m, As-76,
As-77, As-78, As-79, As-80, As-81, As-82, As-82m, As-83, As-84, As-84m, As-85, As-86, As-87,
As-88, As-89, As-90, As-91, As-92, Se-72, Se-73, Se-73m, Se-75, Se-77m, Se-79m, Se-81, Se-81m,
Se-83m, Se-83, Se-84, Se-85, Se-86, Se-87, Se-88, Se-89, Se-90, Se-91, Se-92, Se-93, Se-94, Br-75,
Br-76, Br-77, Br-77m, Br-78, Br-79m, Br-80, Br-80m, Br-82, Br-82m, Br-83, Br-84, Br-84m, Br-85,
Br-86, Br-87, Br-88, Br-89, Br-90, Br-91, Br-92, Br-93, Br-94, Br-95, Br-96, Br-97, Kr-76, Kr-77,
Kr-79m, Kr-79, Kr-81, Kr-81m, Kr-83m, Kr-85m, Kr-87, Kr-88, Kr-89, Kr-90, Kr-91, Kr-92, Kr-93,
Kr-94, Kr-95, Kr-96, Kr-97, Kr-98, Kr-99, Kr-100, Rb-79, Rb-81, Rb-82, Rb-83, Rb-84, Rb-86m,
Rb-88, Rb-89, Rb-90, Rb-90m, Rb-91, Rb-92, Rb-93, Rb-94, Rb-95, Rb-96, Rb-97, Rb-98, Rb-99,
Rb-100, Rb-101, Rb-102, Sr-82, Sr-83, Sr-85, Sr-85m, Sr-87m, Sr-91, Sr-92, Sr-93, Sr-94, Sr-95,
Sr-96, Sr-97, Sr-98, Sr-99, Sr-100, Sr-101, Sr-102, Sr-103, Sr-104, Sr-105, Y-85, Y-86, Y-87, Y-87m,
Y-88, Y-89m, Y-90m, Y-91m, Y-92, Y-93, Y-93m, Y-94, Y-95, Y-96, Y-96m, Y-97, Y-97m, Y-98,
Y-98m, Y-99, Y-100, Y-101, Y-102, Y-103, Y-104, Y-105, Y-106, Y-107, Y-108, Zr-86, Zr-87, Zr-
88, Zr-89, Zr-89m, Zr-90m, Zr-97, Zr-98, Zr-99, Zr-100, Zr-101, Zr-102, Zr-103, Zr-104, Zr-105,
Zr-106, Zr-107, Zr-108, Zr-109, Zr-110, Nb-89, Nb-90, Nb-91, Nb-91m, Nb-92, Nb-92m, Nb-93m,
Nb-94m, Nb-95m, Nb-96, Nb-97, Nb-97m, Nb-98, Nb-98m, Nb-99, Nb-99m, Nb-100, Nb-100m,
Nb-101, Nb-102, Nb-102m, Nb-103, Nb-104, Nb-104m, Nb-105, Nb-106, Nb-107, Nb-108, Nb-
109, Nb-110, Nb-111, Nb-112, Nb-113, Mo-90, Mo-91, Mo-93, Mo-93m, Mo-101, Mo-102, Mo-
103, Mo-104, Mo-105, Mo-106, Mo-107, Mo-108, Mo-109, Mo-110, Mo-111, Mo-112, Mo-113,
Mo-114, Mo-115, Tc-93, Tc-95, Tc-95m, Tc-96, Tc-97, Tc-97m, Tc-98, Tc-99m, Tc-100, Tc-101,
Tc-102, Tc-102m, Tc-103, Tc-104, Tc-105, Tc-106, Tc-107, Tc-108, Tc-109, Tc-110, Tc-111, Tc-
112, Tc-113, Tc-114, Tc-115, Tc-116, Tc-117, Tc-118, Ru-95, Ru-97, Ru-107, Ru-108, Ru-109, Ru-
109m, Ru-110, Ru-111, Ru-112, Ru-113, Ru-114, Ru-115, Ru-116, Ru-117, Ru-118, Ru-119, Ru-
120, Rh-99, Rh-99m, Rh-100, Rh-101, Rh-101m, Rh-102, Rh-102m, Rh-103m, Rh-104, Rh-104m,
Rh-105m, Rh-106, Rh-106m, Rh-107, Rh-108, Rh-108m, Rh-109, Rh-109m, Rh-110, Rh-110m, Rh-
111, Rh-112, Rh-113, Rh-114, Rh-115, Rh-116, Rh-117, Rh-118, Rh-119, Rh-120, Rh-121, Rh-122,
Rh-123, Pd-99, Pd-100, Pd-101, Pd-103, Pd-107m, Pd-109, Pd-109m, Pd-111, Pd-111m, Pd-112,
Pd-113, Pd-114, Pd-115, Pd-116, Pd-117, Pd-118, Pd-119, Pd-120, Pd-121, Pd-122, Pd-123, Pd-
124, Pd-125, Pd-126, Ag-103, Ag-105, Ag-105m, Ag-106, Ag-106m, Ag-107m, Ag-108, Ag-108m,
Ag-109m, Ag-110, Ag-111m, Ag-112, Ag-113, Ag-113m, Ag-114, Ag-115, Ag-115m, Ag-116,
Ag-116m, Ag-117, Ag-117m, Ag-118, Ag-118m, Ag-119, Ag-120, Ag-120m, Ag-121, Ag-122, Ag-
122m, Ag-123, Ag-124, Ag-125, Ag-126, Ag-127, Ag-128, Ag-129, Ag-130, Cd-105, Cd-107, Cd-
109, Cd-111m, Cd-113m, Cd-115, Cd-117, Cd-117m, Cd-118, Cd-119, Cd-119m, Cd-120, Cd-121,
Cd-121m, Cd-122, Cd-123, Cd-123m, Cd-124, Cd-125, Cd-126, Cd-127, Cd-128, Cd-129, Cd-130,
Cd-131, Cd-132, In-107, In-109, In-111m, In-111, In-112, In-112m, In-113m, In-114m, In-114,
In-115m, In-116m, In-116, In-117m, In-117, In-118m, In-118, In-119m, In-119, In-120m, In-120,
In-121m, In-121, In-122m, In-122, In-123m, In-123, In-124m, In-124, In-125m, In-125, In-126m,
In-126, In-127m, In-127, In-128m, In-128, In-129m, In-129, In-130m, In-130, In-131m, In-131, In-
132, In-133, In-134, In-135, Sn-111, Sn-113m, Sn-117m, Sn-119m, Sn-121, Sn-121m, Sn-123m, Sn-
125m, Sn-127, Sn-127m, Sn-128, Sn-128m, Sn-129, Sn-129m, Sn-130, Sn-130m, Sn-131, Sn-131m,
Sn-132, Sn-133, Sn-134, Sn-135, Sn-136, Sn-137, Sb-113, Sb-115m, Sb-115, Sb-117, Sb-118m, Sb-
118, Sb-119, Sb-120m, Sb-120, Sb-122m, Sb-122, Sb-124m, Sb-126m, Sb-127, Sb-128m, Sb-128,

112 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Sb-129, Sb-130m, Sb-130, Sb-131, Sb-132m, Sb-132, Sb-133, Sb-134m, Sb-134, Sb-135, Sb-136,
Sb-137, Sb-138, Sb-139, Te-115, Te-117, Te-118, Te-119m, Te-119, Te-121, Te-121m, Te-123m,
Te-125m, Te-127, Te-129, Te-131, Te-131m, Te-133, Te-133m, Te-134, Te-135, Te-136, Te-137,
Te-138, Te-139, Te-140, Te-141, Te-142, I-121, I-122, I-123, I-124, I-125, I-126, I-128, I-130m,
I-132, I-132m, I-133, I-133m, I-134m, I-134, I-136m, I-136, I-137, I-138, I-139, I-140, I-141, I-142,
I-143, I-144, I-145, Xe-122, Xe-125, Xe-125m, Xe-127m, Xe-127, Xe-129m, Xe-131m, Xe-133m,
Xe-134m, Xe-135m, Xe-137, Xe-138, Xe-139, Xe-140, Xe-141, Xe-142, Xe-143, Xe-144, Xe-145,
Xe-145m, Xe-146, Xe-147, Cs-127, Cs-128, Cs-129, Cs-130, Cs-131, Cs-132, Cs-134m, Cs-135m,
Cs-136m, Cs-138m, Cs-138, Cs-139, Cs-140, Cs-141, Cs-142, Cs-143, Cs-144, Cs-145, Cs-146,
Cs-147, Cs-148, Cs-149, Cs-150, Cs-151, Ba-128, Ba-129, Ba-131, Ba-131m, Ba-133m, Ba-135m,
Ba-136m, Ba-137m, Ba-139, Ba-141, Ba-142, Ba-143, Ba-144, Ba-145, Ba-146, Ba-147, Ba-148,
Ba-149, Ba-150, Ba-151, Ba-152, Ba-153, La-133, La-134, La-135, La-136, La-137, La-141, La-
142, La-143, La-144, La-145, La-146m, La-146, La-147, La-148, La-149, La-150, La-151, La-152,
La-153, La-154, La-155, Ce-134, Ce-135, Ce-137m, Ce-137, Ce-139m, Ce-145, Ce-146, Ce-147,
Ce-148, Ce-149, Ce-150, Ce-151, Ce-152, Ce-153, Ce-154, Ce-155, Ce-156, Ce-157, Pr-139, Pr-
140, Pr-142m, Pr-144m, Pr-144, Pr-145, Pr-146, Pr-147, Pr-148m, Pr-148, Pr-149, Pr-150, Pr-151,
Pr-152, Pr-153, Pr-154, Pr-155, Pr-156, Pr-157, Pr-158, Pr-159, Nd-140, Nd-141, Nd-149, Nd-151,
Nd-152, Nd-153, Nd-154, Nd-155, Nd-156, Nd-157, Nd-158, Nd-159, Nd-160, Nd-161, Pm-141,
Pm-143, Pm-144, Pm-145, Pm-146, Pm-150, Pm-152m, Pm-152, Pm-153, Pm-154m, Pm-154, Pm-
155, Pm-156, Pm-157, Pm-158, Pm-159, Pm-160, Pm-161, Pm-162, Pm-163, Sm-143, Sm-143m,
Sm-145, Sm-146, Sm-155, Sm-156, Sm-157, Sm-158, Sm-159, Sm-160, Sm-161, Sm-162, Sm-163,
Sm-164, Sm-165, Eu-145, Eu-146, Eu-147, Eu-148, Eu-149, Eu-150m, Eu-150, Eu-152m, Eu-154m,
Eu-158, Eu-159, Eu-160, Eu-161, Eu-162, Eu-163, Eu-164, Eu-165, Eu-166, Eu-167, Gd-146, Gd-
147, Gd-148, Gd-149, Gd-150, Gd-151, Gd-153m, Gd-155m, Gd-159, Gd-161, Gd-162, Gd-163,
Gd-164, Gd-165, Gd-166, Gd-167, Gd-168, Gd-169, Tb-151, Tb-152, Tb-153, Tb-154m, Tb-154,
Tb-155, Tb-156m, Tb-156, Tb-157, Tb-158m, Tb-158, Tb-161, Tb-162, Tb-163, Tb-164, Tb-165,
Tb-166, Tb-167, Tb-168, Tb-169, Tb-170, Tb-171, Dy-154, Dy-155, Dy-157, Dy-159, Dy-165, Dy-
165m, Dy-166, Dy-167, Dy-168, Dy-169, Dy-170, Dy-171, Dy-172, Ho-159m, Ho-159, Ho-160m,
Ho-160, Ho-161m, Ho-161, Ho-162m, Ho-162, Ho-163m, Ho-163, Ho-164m, Ho-164, Ho-166,
Ho-167, Ho-168, Ho-169, Ho-170m, Ho-170, Ho-171, Ho-172, Er-160, Er-161, Er-163, Er-165, Er-
167m, Er-169, Er-171, Er-172, Tm-165, Tm-166, Tm-167, Tm-168, Tm-169, Tm-170m, Tm-170,
Tm-171, Tm-172, Tm-173, Yb-166, Yb-167, Yb-168, Yb-169m, Yb-169, Yb-170, Yb-171, Yb-172,
Yb-173, Yb-174, Yb-175m, Yb-175, Yb-176, Yb-177, Lu-169m, Lu-169, Lu-170, Lu-171m, Lu-
171, Lu-172m, Lu-172, Lu-173, Lu-174m, Lu-174, Lu-176m, Lu-177m, Lu-177, Hf-170, Hf-171,
Hf-172, Hf-173, Hf-175, Hf-178m, Hf-179m, Hf-180m, Hf-181, Hf-182, Ta-177, Ta-178, Ta-179,
Ta-180m, Ta-180, Ta-182m, Ta-183, W-178, W-180, W-181, W-183m, W-185, W-185m, W-187,
W-188, W-189, Re-181, Re-182, Re-182m, Re-183, Re-184, Re-184m, Re-186, Re-186m, Re-188,
Re-188m, Re-189, Os-182, Os-183, Os-184, Os-185, Os-186, Os-187, Os-188, Os-189, Os-189m,
Os-190, Os-190m, Os-191, Os-191m, Os-192, Os-193, Os-194, Ir-185, Ir-186, Ir-188, Ir-189, Ir-
189m, Ir-190, Ir-191m, Ir-192, Ir-192m, Ir-193m, Ir-194, Ir-194m, Ir-196, Ir-196m, Pt-188, Pt-189,
Pt-190, Pt-191, Pt-192, Pt-193, Pt-193m, Pt-194, Pt-195, Pt-195m, Pt-196, Pt-197, Pt-197m, Pt-198,
Pt-199, Pt-199m, Pt-200, Au-193, Au-194, Au-195, Au-195m, Au-196, Au-198, Au-198m, Au-199,
Au-199m, Au-200, Au-200m, Hg-193m, Hg-193, Hg-194, Hg-195m, Hg-195, Hg-197, Hg-197m,
Hg-199m, Hg-203, Hg-205, Hg-206, Tl-200, Tl-201, Tl-202, Tl-203, Tl-204, Tl-205, Tl-206, Tl-207,
Tl-208, Tl-209, Tl-210, Pb-200, Pb-202, Pb-203, Pb-205, Pb-205m, Pb-207m, Pb-209, Pb-210, Pb-
211, Pb-212, Pb-214, Bi-205, Bi-206, Bi-207, Bi-208, Bi-210, Bi-210m, Bi-211, Bi-212, Bi-212m,
Bi-213, Bi-214, Po-206, Po-207, Po-208, Po-209, Po-210, Po-211, Po-211m, Po-212, Po-213, Po-
214, Po-215, Po-216, Po-218, At-216, At-217, At-218, Rn-216, Rn-217, Rn-218, Rn-219, Rn-220,
Rn-222, Fr-220, Fr-221, Fr-222, Fr-223, Ra-220, Ra-222, Ra-227, Ra-228, Ac-224, Ac-228, Th-226,
Th-231, Pa-228, Pa-229, Pa-230, Pa-234, Pa-234m, Pa-235, U-230, U-231, Np-234, Np-236m, Np-
240, Np-240m, Np-241, Pu-237m, Pu-245, Pu-247, Am-239, Am-240, Am-245, Am-246, Am-247,
Cm-240, Cm-251, Bk-245, Bk-246, Bk-247, Bk-248, Bk-248m, Bk-251, Cf-246, Cf-248, Cf-255,
Es-251, Es-252, Es-254m

14.21. [DEPLETION] 113
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

These tables are available in the SCALE 6.1 manual.

14.21.3 Additional restrictions

• Nuclides in ‘tracking_nuclides’ are validated against the TRITON nuclide list..

14.21.4 Advanced

The following parameters are renamed or reorganized when being output to the Omnibus XML input file:

Parameter Renamed subdatabase Renamed parameter
burn_time db burn_steps
constant_flux_per_step db fluxes
constant_power_per_step db powers
cram_internal_substeps db cramInternalSubsteps
cram_order db cramOrder
decay_time db decay_steps
depletion_solver db origen_solver
hdf5_output db hdf5_filename
max_burn_substep_size db max_burn_step_size
max_decay_substep_size db max_decay_step_size
max_step db max_burn_length
nuclide_filter_threshold db nuclide_threshold
nuclide_filter_type db nuclide_threshing
num_steps db num_libs
origen_library db library
tracking_nuclides db tracking_nuclides
verbose db depletion_diagnostics
write_predictor_data db write_predictor
write_xs db write_xs

14.22 [SHIFT]

The Shift database is for Monte Carlo execution parameters. It is broken into a top-level database and three subsidiary
databases. If a KCODE problem is being run (see [PROBLEM]), the [KCODE] subdatabase is required. It specifies
the number of inactive and active cycles, as well as the particles per cycle. If running a fixed-source problem, the
num_histories parameter in the main [SHIFT] database is required.

Shift supports experimental domain decomposition for very large problems. If desired, the [DECOMPOSITION]
block should be included to specify the spatial decomposition.

114 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

14.22.1 Sub-databases

Name and type Frequency

decomposition
Exactly once

kcode
Optional

vr Exactly once

14.22.2 Parameters

do_transport
If false, this disables the actual solve.

Setting do_transport to false is a way to ensure problem integrity without running an expensive transport
calculation. It disables transport itself but allows the rest of the code (including buliding sources, tallies, and
physics) to run. This is simliar to parm=check in SCALE.

Changed in version 5.3: This replaces the mode check problem option.

Default True

Type boolean

num_histories / np
Number of histories.

Default 1000

Type positive integer

Applicability when problem mode is ‘forward’ or ‘adjoint’.

num_dd_samples
Number of test samples to determine initial particle balance.

With domain decomposed problems, an a priori determination of the particle balance across blocks is performed
before transport. Each domain randomly samples the source for a total of num_dd_samples times; the
fraction of source particles found within the “core” (non-overlapping) component of each domain is used to
determine the number of particles emitted from the source on that domain.

Type integer

Applicability when Shift spatial partitioning is domain decomposed.

output_fraction_completed
Output fraction of completed particles.

Default 1.0

Type positive real number

check_frequency / chk_freq
Check frequency for domain decomposed current cycle completion.

Default 1

Type positive integer

Applicability when Shift spatial partitioning is domain decomposed.

14.22. [SHIFT] 115
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

particle_buffer_size / bufsize
Size of particle buffer for DD problem.

Default 1000

Type positive integer

Applicability when Shift spatial partitioning is domain decomposed.

14.22.3 Advanced parameters

These parameters are not meant for typical use.

physics
Name of the physics DB to use.

Type string

14.22.4 Additional defaults

• ‘physics’ defaults to the name of the last PHYSICS entered..

• Domain decomposition samples (num_dd_samples) defaults to num_histories / 10.

• A [DECOMPOSITION] subdatabase is added by default.

• A [VR] subdatabase is added by default.

14.22.5 Additional restrictions

• A [KCODE] sub-database must be included for eigenvalue problems.

14.22.6 Advanced

The following parameters are renamed or reorganized when being output to the Omnibus XML input file:

Parameter Renamed subdatabase Renamed parameter
check_frequency mc_check_freq
num_dd_samples source_db dd_test_samples
num_histories source_db Np
output_fraction_completed mc_diag_frac

14.22.7 [SHIFT][DECOMPOSITION]

Parameters

x_partition / x
Boundary mesh along the X axis.

Default [-1000000000000.0, 1000000000000.0]

Type list of two or more monotonically increasing floats

y_partition / y
Boundary mesh along the Y axis.

116 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Default [-1000000000000.0, 1000000000000.0]

Type list of two or more monotonically increasing floats

z_partition / z
Boundary mesh along the Z axis.

Default [-1000000000000.0, 1000000000000.0]

Type list of two or more monotonically increasing floats

overlap
Fraction of DD domain overlap.

Default 0.0

Type real number inclusive [0.0, 1.0]

Applicability when Shift spatial partitioning is domain decomposed.

Advanced parameters

These parameters are not meant for typical use.

boundary_reflect
Whether to reflect on each side of the boundary mesh.

Default [0, 0, 0, 0, 0, 0]

Type list of six zero/one integers for -X,+X,-Y,+Y,-Z,+Z

Additional restrictions

• The number of processors must divide evenly into the number of decompositions if a [RUN] block is used.

Advanced

The following parameters are renamed or reorganized when being output to the Omnibus XML input file:

Parameter Renamed subdatabase Renamed parameter
boundary_reflect boundary_db reflect_bnd_mesh
overlap boundary_db overlap
x_partition boundary_db x_bnd_mesh
y_partition boundary_db y_bnd_mesh
z_partition boundary_db z_bnd_mesh

14.22.8 [SHIFT][KCODE]

Parameters

num_histories_per_cycle / npk
Number of histories per cycle.

Default 1000

Type positive integer

14.22. [SHIFT] 117
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

x_entropy
Boundaries in x for the Shannon entropy mesh.

Type list of two or more monotonically increasing floats

Units cm

y_entropy
Boundaries in y for the Shannon entropy mesh.

Type list of two or more monotonically increasing floats

Units cm

z_entropy
Boundaries in z for the Shannon entropy mesh.

Type list of two or more monotonically increasing floats

Units cm

initial_keff / initk
Initial keff value.

Default 1.0

Type positive real number

num_cycles / nk
Number of kcode cycles.

Default 50

Type integer

num_inactive_cycles / nik
Number of inactive kcode cycles.

Default 10

Type integer

quiet_cycle_output / quiet
If true, do not output kcycle output to stdin.

Default False

Type boolean

Additional defaults

• Shannon entropy defaults to partition bounds.

Advanced

The following parameters are renamed or reorganized when being output to the Omnibus XML input file:

118 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Parameter Renamed subdatabase Renamed parameter
initial_keff solver_db keff_init
num_cycles solver_db num_cycles
num_histories_per_cycle source_db Np
num_inactive_cycles solver_db num_inactive_cycles
quiet_cycle_output solver_db quiet
x_entropy solver_db entropy_x
y_entropy solver_db entropy_y
z_entropy solver_db entropy_z

14.22.9 [SHIFT][VR]

Parameters

variance_reduction / vr
Variance reduction method.

Default ‘roulette’

Type ‘ww’, ‘analog’, or ‘roulette’

weight_cutoff / wc
Particle weight cutoff for roulette.

Default 0.25

Type non-negative real number

Applicability when ‘variance_reduction’ is ‘roulette’ or ‘ww’.

weight_survival / ws
Particle weight survival for roulette.

Default 0.5

Type non-negative real number

Applicability when ‘variance_reduction’ is ‘roulette’.

ww_lower_factor / wwlow
Lower weight window ratio.

Default 0.5

Type real number inside (0, 1)

Applicability when ‘variance_reduction’ is ‘ww’.

ww_upper_factor / wwhigh
Upper weight window ratio.

Default 2.5

Type real number greater than 1

Applicability when ‘variance_reduction’ is ‘ww’.

Advanced

The following parameters are renamed or reorganized when being output to the Omnibus XML input file:

14.22. [SHIFT] 119
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Parameter Renamed subdatabase Renamed parameter
variance_reduction vr_db method
weight_cutoff vr_db weight_cutoff
weight_survival vr_db weight_survival
ww_lower_factor vr_db ww_lower_factor
ww_upper_factor vr_db ww_upper_factor

14.23 [DENOVO]

14.23.1 Parameters

do_transport
If false, this disables the actual solve.

Default True

Type boolean

method
Solution method or spatial discretization.

Default ‘spn’

Type ‘spn’, ‘sc’, ‘ld’, or ‘tld’

x
Mesh coordinates along the X axis.

Type list of monotonically increasing floats

y
Mesh coordinates along the Y axis.

Type list of monotonically increasing floats

z
Mesh coordinates along the Z axis.

Type list of monotonically increasing floats

boundary
Boundary conditions on the deterministic problem.

Default ‘vacuum’

Type ‘vacuum’, ‘isotropic’, or ‘reflect’

boundary_reflect
Whether to reflect on each side of the problem.

Default [1, 1, 1, 1, 1, 1]

Type list of six zero/one integers for -X,+X,-Y,+Y,-Z,+Z

Applicability when ‘boundary’ is ‘reflect’.

physics
Name of the associated physics database.

Type string

quadrature
Discrete ordinates quadrature set class.

120 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Default ‘qr’

Type ‘levelsym’, ‘glproduct’, ‘qr’, ‘ldfe’, or ‘userdefined’

Applicability when Denovo is using a discrete ordinates (SN) solver.

quad_order
Level-symmetric quadrature set order.

Default 10

Type non-negative integer

Applicability when ‘quadrature’ is ‘qr’ or ‘levelsym’.

quad_num_azi
Number of azimuthal angles per level per octant.

Default 4

Type positive integer

Applicability when ‘quadrature’ is ‘ldfe’ or ‘qr’ or ‘glproduct’.

quad_num_azi_vec
List of the number of azimuthal angles per polar angle per octant, ordered from pole to equator.

Default []

Type list of positive integers

Applicability when ‘quadrature’ is ‘qr’.

quad_num_polar
Number of polar angles per level per octant.

Default 4

Type positive integer

Applicability when ‘quadrature’ is ‘ldfe’ or ‘qr’ or ‘glproduct’.

quad_file
User-specified quadrature set file.

Type file path for reading

Applicability when ‘quadrature’ is ‘userdefined’.

ldfe_order
Order for the LDFE quadrature set.

Default 1

Type positive integer

Applicability when ‘quadrature’ is ‘ldfe’.

quad_polar_axis
Axis of rotation for product quadrature sets.

Default ‘z’

Type ‘x’, ‘y’, or ‘z’

Applicability when ‘quadrature’ is ‘qr’ or ‘glproduct’.

x_blocks
The number of spatial partitions along the x axis.

14.23. [DENOVO] 121
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Type non-negative integer

y_blocks
The number of spatial partitions along the y axis.

Type non-negative integer

z_blocks
The number of pipelining blocks along the z axis.

Type non-negative integer

energy_sets
The number of energy partitions.

Default 1

Type non-negative integer

Applicability when Upscatter is enabled.

partition_upscatter
Partition just the upscatter groups.

Default True

Type boolean

Applicability when Denovo energy partitioning is multiset.

first_group
The first energy group to solve.

Default 0

Type non-negative integer

last_group
The last energy group to solve.

Default 1000000

Type non-negative integer

tolerance
Convergence criterion for the deterministic solver.

Default 0.001

Type real number inside (0, 1)

max_iterations
The maximum number of Krylov or source iterations.

Default 100

Type non-negative integer

krylov_space
The number of Krylov vectors to store when using GMRES.

Default 20

Type integer

multigroup_solver
Solution technique for the multigroup block solve.

122 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Default ‘gauss_seidel’

Type ‘gauss_seidel’, or ‘krylov’

Applicability when Upscatter is enabled.

solver
Solver used in each within-group SN solve.

Default ‘gmres’

Type ‘gmres’, ‘si’, or ‘gmres_r’

two_grid
Enable two-grid upscattering acceleration.

Default False

Type boolean

Applicability when Upscatter is enabled.

upscatter_solver
Within-group solver for upscattering groups.

Default ‘gmres’

Type ‘gmres’, or ‘si’

Applicability when ‘multigroup_solver’ is ‘gauss_seidel’.

upscatter_tolerance
Convergence criterion for the upscatter iterations.

Default 0.01

Type real number inside (0, 1)

Applicability when ‘multigroup_solver’ is ‘gauss_seidel’.

upscatter_inner_iterations
Maximum number of iterations for the within-group upscattering solve.

Default 10

Type non-negative integer

Applicability when ‘multigroup_solver’ is ‘gauss_seidel’.

upscatter_inner_tolerance
Convergence criterion for the within-group upscattering solve.

Default 0.01

Type real number inside (0, 1)

Applicability when ‘multigroup_solver’ is ‘gauss_seidel’.

mix_tolerance
Tolerance for collapsing similar mixed materials into one.

Default 0.05

Type real number inside (0, 1)

rays_deterministic
If true, use face midpoints rather than stratified sampling.

Default False

14.23. [DENOVO] 123
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Type boolean

rays_per_face
Number of ray trace rays to be fired per mesh face.

Default 4

Type positive square integer

raytrace_axes
Axis/axes along which to fire rays for ray trace.

Default ‘xyz’

Type axis or axes (‘x’,’zy’,’xyz’)

silo_mixing_table
Write mixed materials to Silo output.

Default True

Type boolean

14.23.2 Advanced parameters

These parameters are not meant for typical use.

downscatter
Whether to disable upscattering.

Type boolean

pn_order
Order of the Legendre scattering expansion.

Type non-negative integer

use_cuda
Use the CUDA sweeper to solve the KBA equations (experimental).

Default False

Type boolean

Applicability when ‘method’ is ‘sc’ or ‘ld’.

void_matid
Material ID to be used when raytrace is outside the problem.

Default 0

Type integer

14.23.3 Additional defaults

• ‘physics’ defaults to the name of the last PHYSICS entered..

• Auto-set multigroup physics parameters.

• If a [RUN] block is present, come up with a logically square KBA decomposition.

• Force number of Z blocks in SPN to 1, and default to nx * ny for SN.

124 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

14.23.4 Additional restrictions

• The number of processors must be equal to the decomposition size (X * Y * E) if a [RUN] block is used..

• Extra parameter validation.

14.23.5 Advanced

The following parameters are renamed or reorganized when being output to the Omnibus XML input file:

Parameter Renamed subdatabase Renamed parameter
boundary_reflect boundary_db reflect
energy_sets num_sets
krylov_space aztec_kspace
ldfe_order quadrature_db order
max_iterations max_itr
mix_tolerance raytrace_db mix_tolerance
multigroup_solver mg_solver
partition_upscatter partition_upscatter
pn_order Pn_order
quad_file quadrature_db quadrature_file_name
quad_num_azi quadrature_db azimuthals_octant
quad_num_azi_vec quadrature_db azimuthals_vector
quad_num_polar quadrature_db polars_octant
quad_order quadrature_db Sn_order
quad_polar_axis quadrature_db polar_axis
quadrature quadrature_db quad_type
rays_deterministic raytrace_db deterministic
rays_per_face raytrace_db rays_per_face
raytrace_axes raytrace_db axes
silo_mixing_table silo_db mixing_table
solver within_group_solver
two_grid upscatter_db upscatter_acceleration
upscatter_inner_iterations upscatter_db inner_itr
upscatter_inner_tolerance upscatter_db inner_tolerance
upscatter_solver upscatter_db up_group_solver
upscatter_tolerance upscatter_db tolerance
void_matid raytrace_db void_matid
x x_edges
x_blocks num_blocks_i
y y_edges
y_blocks num_blocks_j
z z_edges
z_blocks num_z_blocks

14.24 [MANUALWW]

14.24.1 Parameters

ww_file
Manual weight window HDF5 file.

14.24. [MANUALWW] 125
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Type file path for reading (extension ‘.h5’)

14.25 [RUN]

The [RUN] database enables support for running the Omnibus executable with an inline command omnibus-run.
The auto-run feature will format and echo program output to the screen, and it automatically saves the output and error
streams to disk.

If the SCALE and DATA environment variables are not set, omnibus-run will use the values determined at config-
uration time.

14.26 [RUN=serial]

Run as a serial process on the local machine, echoing output to the user. If the omnibus-run process is aborted, the
omnibus command will also abort.

14.26.1 Advanced parameters

These parameters are not meant for typical use.

omnibus
Path to the Omnibus executable.

Default ‘/SCALE/bin/omnibus’

Type file path for reading

14.27 [RUN=mpi]

Run as an MPI process on the local machine, echoing output to the user. If the omnibus-run process is aborted, the
mpirun omnibus command will also abort.

14.27.1 Parameters

np
Number of processors to run.

Type positive integer

mpiexec_args
Optional arguments passed to mpiexec..

Default []

Type list of strings

machinefile
Optional MPI machinefile for running on multiple nodes..

Default

‘’

126 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Type file path for reading (empty value allowed)

14.27.2 Advanced parameters

These parameters are not meant for typical use.

mpiexec
Path to the MPI run command.

Default u’/opt/gcc48/openmpi/bin/mpiexec’

Type file path for reading

npflag
Number of processors flag.

Default u’-np’

Type string

omnibus
Path to the Omnibus executable.

Default ‘/SCALE/bin/omnibus’

Type file path for reading

14.28 [RUN=pbs]

Create a PBS run file for this job. A typical PBS run block will look like:

[RUN=pbs]
nodes 1
ppn 16
pmem 7900mb
walltime "24:00:00"

If the omnibus-run command is aborted while the job is run, the job will not be automatically aborted. You must
run qdel separately to abort the job.

14.28.1 Parameters

nodes
Number of nodes to use.

Type positive integer

ppn
Number of processors per node.

Type positive integer

pmem
Amount of memory per processor (e.g. ‘7900mb’).

Default

‘’

Type string

14.28. [RUN=pbs] 127
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

walltime
Wall time limit.

Note: It is common to have colons as part of the wall time; since colons must be escaped in Omnibus ASCII
input, you will almost always need to escape the wall time input parameter:

[RUN=pbs]
walltime "24:00:00"

Default

‘’

Type string

queue
Queue to use.

Default

‘’

Type string

join
Output joining flags.

Default ‘oe’

Type string

email
Email address of recipient.

Type string

when_email
When to email.

Default ‘ea’

Type string

qsub
PBS submission command or path.

Default ‘qsub’

Type string

qstat
PBS status command or path.

Default ‘qstat’

Type string

qdel
PBS deletion command or path.

Default ‘qdel’

Type string

mpiexec_args
Optional arguments passed to mpiexec..

128 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Default []

Type list of strings

detach
Whether to simply submit the job and to not follow it.

Default False

Type boolean

14.28.2 Advanced parameters

These parameters are not meant for typical use.

mpiexec
Path to the MPI run command.

Default u’/opt/gcc48/openmpi/bin/mpiexec’

Type file path for reading

omnibus
Path to the Omnibus executable.

Default ‘/SCALE/bin/omnibus’

Type file path for reading

14.28.3 Additional defaults

• Email address defaults to git config author.email.

• Automatically set MPI arguments and processors for clusters.

14.28. [RUN=pbs] 129
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

130 Chapter 14. Omnibus Input Database Specification
CASL-U-2015-0079-000



CHAPTER

FIFTEEN

POSTPROCESSING

In order to postprocess HDF5 data with the Python front-end, it’s necessary to download h5py, which is often easily
installed with package managers such as MacPorts.

15.1 Cylindrical tally postprocessing

To load the HDF5 database into Python:

>>> from omnibus.postprocess import cyltally
>>> tallies = cyltally.load('cyltally.h5')
INFO: Loading HDF5 from cyltally.h5

The result is a dictionary of tallies, each corresponding to a CYLTALLY entry in the Omnibus input, with the corre-
sponding name attribute:

>>> tallies.keys()
['n:SVXF:VXF-3', 'n:TRRH:FT-E7']
>>> tal = tallies['n:SVXF:VXF-3']
>>> print tal
TallyResult: n:SVXF:VXF-3

The top-level tally has several attributes:

>>> print tal.description
neutron flux in SVXF target location VXF-3
>>> print tal.mesh.translation
[ -9.15368 38.12784 0. ]
>>> tal.bin_bounds.num_total_groups
200
>>> tal.multipliers
(u'flux',)

And its data can be dumped to a multigroup Silo file for visualization:

>>> tal.write_to_silo()
INFO: Writing cylindrical tally 'n:SVXF:VXF-3' to n_SVXF_VXF_3.silo

The next layer of the tally hierarchy are the multipliers specified for each tally, which we provide a dictionary-like
shortcut for accessing:

>>> print tal.tallies
{'flux': <TallyMultiplierResult ...>}
>>> rxntal = tal['flux']
>>> print rxntal
TallyMultiplierResult: flux

131
CASL-U-2015-0079-000

http://www.h5py.org


Exnihilo Documentation, Release 5.3 (Dev)

These have the actual flux results stored as a TallyContainer of mean and variance:

>>> rxntal.total
TallyContainer(mean=array([[[ 7.93285055e-05]]]), var=array([[[
1.46720455e-12]]]))

The indexing for the subtally results is r, theta, z.

The TallyContainer also provides a relative error function for convenience, which will squelch “divide-by-zero” errors
given when a tally bin encountered no particles, setting the relative error to ‘inf’:

>>> rxntal.total.re
array([[[ 0.01526919]]])

If energy binning was used, the tally multiplier result will also have energy-binned tallies, indexed by energy-bin first,
then r, theta, z:

>>> rxntal.binned.mean.shape
(200, 1, 1, 1)

The tally results can be sliced and printed alongside the lower and upper energy groups:

>>> lower = rxntal.bin_bounds.get_lower_bounds()
>>> upper = rxntal.bin_bounds.get_upper_bounds()
>>> for (l, u, mean, rel) in zip(lower, upper,
... rxntal.binned.mean[:,0,0,0], rxntal.binned.re[:,0,0,0]):
... print "%.4e to %.4e: %10.3g | %.2f" % (l, u, mean, rel)
...
1.9640e+07 to 2.0000e+07: 0 | inf

[snip]
1.5000e-01 to 1.8400e-01: 1.16e-06 | 0.04
1.2500e-01 to 1.5000e-01: 1.82e-06 | 0.03
1.0000e-01 to 1.2500e-01: 3.64e-06 | 0.02
7.0000e-02 to 1.0000e-01: 9.33e-06 | 0.02
5.0000e-02 to 7.0000e-02: 1.09e-05 | 0.02
4.0000e-02 to 5.0000e-02: 7.33e-06 | 0.02
3.0000e-02 to 4.0000e-02: 8.19e-06 | 0.02
2.1000e-02 to 3.0000e-02: 7.66e-06 | 0.02
1.4500e-02 to 2.1000e-02: 5.2e-06 | 0.02
1.0000e-02 to 1.4500e-02: 2.99e-06 | 0.02
5.0000e-03 to 1.0000e-02: 2.41e-06 | 0.02
2.0000e-03 to 5.0000e-03: 7.89e-07 | 0.03
5.0000e-04 to 2.0000e-03: 1.32e-07 | 0.06
1.0000e-05 to 5.0000e-04: 9.89e-09 | 0.17

132 Chapter 15. Postprocessing
CASL-U-2015-0079-000



CHAPTER

SIXTEEN

OMNIBUS.CONVERTERS PACKAGE

The Omnibus converters package allows results from other code systems to be read into Omnibus postprocessing
containers for easy data analysis. This enables straightforward integration of other common nuclear engineering codes
with powerful tools such as the matplotlib plotting library and the pandas data analysis library.

16.1 omnibus.converters.mctal module

Read MCNP mctal files into Omnibus postprocessing data structures.

Caution: MCNP is unable to represent complex user input (e.g. cell unions and multiplier selections) in the mctal
file. Sometimes zeroes in the various “meshes” returned by this reader represent these complicated expressions.
The MCNP input (or output file) will be needed to properly interpret these instances.

Note: When reading multigroup data, this reader sets an artificial small value for the lower energy of the lowest bin
(which is implicitly created by MCNP). For correctness, it should be replaced with the problem’s lower cutoff energy
for the tallied particle type.

class omnibus.converters.mctal.Kcode(*args, **kwargs)
Bases: omnibus.postprocess.field.Field

Eigenvalue solution properties.

Attributes

dims Dimension names for each axis.
keff Average col/abs/trk-len keff
keff_fom Average col/abs/trk-len keff figure of merit
keff_stdev Average col/abs/trk-len keff standard deviation
location Get a description of where this field has been sliced from.
num_active_cycles
num_cycles
num_histories_per_cycle Number of histories used in this cycle
shape Get the shape of the data stored in this field..

Methods

133
CASL-U-2015-0079-000

http://matplotlib.org
http://pandas.pydata.org


Exnihilo Documentation, Release 5.3 (Dev)

as_dataframe() Convert the field to a Pandas dataframe for easier processing.
axis(dim) Get the axis index corresponding to the given name.
axis_index(dim) Get the axis index corresponding to the given dimension name.
reorder(newdims) Reorder the indices of the data by dimension name.
xs(**kwargs) Extract a hyperslab view of the tally field data.
xs_by_index(**kwargs) Extract a hyperslab view of the tally field data.

keff
Average col/abs/trk-len keff

keff_fom
Average col/abs/trk-len keff figure of merit

keff_stdev
Average col/abs/trk-len keff standard deviation

num_histories_per_cycle
Number of histories used in this cycle

class omnibus.converters.mctal.McnpAxis(*args, **kwargs)
Bases: omnibus.postprocess.field.LabelAxis

Attributes for one ‘dimension’ of a tally.

Total and cumulative values are counted as part of the total length.

Attributes

mnemonic: string Short name of the MCNP variable index.

Methods

describe_index(i)
index(value) Find the index of a value on this mesh.

index(value)
Find the index of a value on this mesh.

shape
The actual shape of this axis’ mesh.

class omnibus.converters.mctal.McnpCellTallies(*args, **kwargs)
Bases: omnibus.postprocess.celltally.CellTallies

Collection of all cell tallies present in a file.

Attributes

kcode : Eigenvalue solution data

Methods

134 Chapter 16. omnibus.converters package
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

from_group(root) Build results for all tallies in a “tallies” group.
iteritems()
iterkeys()
itervalues()

class omnibus.converters.mctal.McnpCellTallyResult(*args, **kwargs)
Bases: omnibus.postprocess.celltally.CellTallyResult

Data corresponding to a single cell tally.

This corresponds to all the results from a single fNN specification in MCNP.

Attributes

name (int) Tally number
pt (str) Particle type: n p e
taltype (str) Tally type: none point ring fip fir fic
axes (list) Dimensions on the tally data
tfc : Tally fluctuation info.

Methods

at_step(step) Return a view of the tally data at a single depletion time step.
from_group(group, shared) Build results for a single CELL tally from an HDF5 file.
from_group_v1(group, *args, **kwargs) Backward compatibility: build tallies from older HDF5 files.
from_group_v2(group, shared) Backward compatibility: build tallies from older HDF5 files.
from_group_v3(group, shared) Build results for a single CELL tally from an HDF5 file.
from_group_v4(group, shared) Build results for a single CELL tally from an HDF5 file.
summarize([file]) Print a summary of the energy-integrated results for this tally.

class omnibus.converters.mctal.McnpTallyField(*args, **kwargs)
Bases: omnibus.postprocess.field.Field

Multi-dimensional field for storing and accessing bulk tally data.

This provides accessors for retrieving the originally stored mean and variance, as well as calculation methods
for returning relative error. Additionally, in the case of multi-dimensional data, it allows advanced slicing of the
data.

Attributes

mean (array (or float)) The mean values for this tally.
re (array (or float)) Relative errors saved from MCNP.

Methods

as_dataframe() Convert the field to a Pandas dataframe for easier processing.
Continued on next page

16.1. omnibus.converters.mctal module 135
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Table 16.6 – continued from previous page
axis(dim) Get the axis index corresponding to the given name.
axis_index(dim) Get the axis index corresponding to the given dimension name.
reorder(newdims) Reorder the indices of the data by dimension name.
xs(**kwargs) Extract a hyperslab view of the tally field data.
xs_by_index(**kwargs) Extract a hyperslab view of the tally field data.

bin_bounds
If this is an energy-binned tally, return the bin bounds.

If not energy-binned (or a slice on the energy axis has already been taken), this will raise a KeyError.

cells
Get an integer array of MCNP cells.

var
Calculate variance from the relative error.

This will return an array if the stored mean and variance are arrays.

re =

√
var

mean

class omnibus.converters.mctal.Reader(filepath)
Bases: omnibus.textfile.TextFile

Helper class to read mctal file into tally data structure.

Attributes

closed
eof Return whether we’re at the end of the file

Methods

close()
load() Read and parse the file, setting tallies.
next() Get the next line of the file output, using a one-line buffer.
read_values(num) Read num space-separated values from the file.

load()
Read and parse the file, setting tallies.

read_values(num)
Read num space-separated values from the file.

tallies = None
Tally data

version = None
Version number for switching on format

class omnibus.converters.mctal.Tfc(*args, **kwargs)
Bases: omnibus.container.Container

136 Chapter 16. omnibus.converters package
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Tally fluctuation properties.

Attributes

index : Index into tally bin we’re reporting
data (dtype=Tfc.dtype) Record field of data

16.2 omnibus.converters.meshtal module

Read MCNP meshtal files into Omnibus postprocessing data structures.

class omnibus.converters.meshtal.McnpMeshTallies(*args, **kwargs)
Bases: omnibus.postprocess.meshtally.MeshTallies

Collection of all MCNP mesh tallies present in a file.

Methods

from_group(root) Build results for all tallies in a “tallies” group.
iteritems()
iterkeys()
itervalues()

class omnibus.converters.meshtal.McnpMeshTallyResult(*args, **kwargs)
Bases: omnibus.postprocess.meshtally.MeshTallyResult

Data corresponding to a single user tally.

Attributes

name (int) Tally number
pt (str) Particle type: n p e

Methods

at_step(step) Return a view of the tally data at a single depletion time step.
from_group(group, shared) Build results for a single MESH tally from an HDF5 file.
from_group_v1(group, shared) Backward compatibility: build tallies from older HDF5 files.
from_group_v2(group, shared)
from_group_v3(group, shared)
from_group_v4(group, shared) Build results for a single MESH tally from an HDF5 file.

energy_bins
Return energy bin boundaries (backwards compatibility)

16.2. omnibus.converters.meshtal module 137
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

16.3 omnibus.converters.monaco module

Read Monaco tallies into Omnibus postprocessing data structures.

Warning: Currently this class is only tested for multigroup cell tallies.

Note: When reading multigroup data, this reader sets an arbitrarily small value for the lower energy of the lowest bin
(which is implicitly created by Monaco). For correctness, it should be replaced with the problem’s lower cutoff energy
for the tallied particle type.

class omnibus.converters.monaco.MonacoCellTallyResult(*args, **kwargs)
Bases: omnibus.postprocess.tally.TallyResult

Results for a single cell tally in Monaco.

Attributes

limits (dict) Key->value map of region/unit/media on the input tally.
volume (float) Volume of the tally.
multiplier (float) Scalar multiplier used for the tally.

Methods

at_step(step) Return a view of the tally data at a single depletion time step.
from_group(group, shared[, reorder]) Build results for a single tally from an HDF5 group.

16.4 omnibus.converters.opus module

16.5 omnibus.converters.triton module

Convert Triton number density output to same format as Omnibus depletion concentration field.

Note: This converter relies on an external tool to convert a Triton Fortran intermediate file to a csv file. It additionally
requires cell volumes and the total heavy metal mass to scale the results correctly.

16.6 omnibus.converters.vesta module

16.7 Module contents

Convert third-party results into Omnibus postprocessing formats.

138 Chapter 16. omnibus.converters package
CASL-U-2015-0079-000



CHAPTER

SEVENTEEN

OMNIBUS.POSTPROCESS PACKAGE

17.1 Submodules

17.2 omnibus.postprocess.celltally module

class omnibus.postprocess.celltally.CellTallies(*args, **kwargs)
Bases: omnibus.postprocess.tally.Tallies

Collection of all cell tallies present in a file.

Methods

from_group(root) Build results for all tallies in a “tallies” group.
iteritems()
iterkeys()
itervalues()

class omnibus.postprocess.celltally.CellTallyMultiplierResult(*args, **kwargs)
Bases: omnibus.postprocess.tally.TallyMultiplierResult

Cell union tally results for a single tally multiplier.

These store all the cell unions specified by the user for this multiplier. A “multiplier” can be a reaction or a
response.

Energy-binned tallies will have the shape (num_groups, num_unions).

Attributes

unions (list of strings) Cell union labels corresponding to each tally entry.

num_unions
The number of cell unions in this tally.

class omnibus.postprocess.celltally.CellTallyResult(*args, **kwargs)
Bases: omnibus.postprocess.tally.TallyResult

Results for a single CELL tally, with all its multipliers.

This corresponds to all the results from a single [TALLY][CELL] block in an Omnibus input.

139
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Attributes

unions (list of strings) Cell union labels corresponding to each tally entry.
vol-
umes

(array) Volumes used when the cell tally results were normalized. These may be given by the user,
calculated via MCNP or the like, or unity if unknown. Variances and means in the tallies have
already been normalized by these volumes.

Methods

summarize : Print a summary of the energy-integrated results for this tally.

classmethod from_group(group, shared)
Build results for a single CELL tally from an HDF5 file.

This creates the union labels from cell lengths and ids. We use the shared data to convert cellids to cell
labels.

classmethod from_group_v1(group, *args, **kwargs)
Backward compatibility: build tallies from older HDF5 files.

classmethod from_group_v2(group, shared)
Backward compatibility: build tallies from older HDF5 files.

This creates the union labels from cell lengths and labels.

classmethod from_group_v3(group, shared)
Build results for a single CELL tally from an HDF5 file.

classmethod from_group_v4(group, shared)
Build results for a single CELL tally from an HDF5 file.

This creates the union labels from cell lengths and ids. We use the shared data to convert cellids to cell
labels.

num_unions
The number of cell unions in this tally.

summarize(file=None)
Print a summary of the energy-integrated results for this tally.

Parameters file : file-like object

The destination for the output stream. Default is sys.stdout.

class omnibus.postprocess.celltally.SharedCellTallyData(*args, **kwargs)
Bases: omnibus.postprocess.tally.SharedTallyData

Data shared by all tallies in a file.

This is mostly used in construction to pass problem metadata etc. between tallies.

Attributes

cell_labels: array Labels of all cells in the problemzz

Methods

140 Chapter 17. omnibus.postprocess package
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

from_group(root)

class omnibus.postprocess.celltally.SharedCellTallyMultiplierData(*args,
**kwargs)

Bases: omnibus.postprocess.celltally.SharedCellTallyData

Data shared by a single cell tally.

Attributes

cell_unions: array Labels of all cells in the problemzz

Methods

from_group(root)

class omnibus.postprocess.celltally.SingleTallyContainer
Bases: tuple

Attributes

binned Alias for field number 1
label Alias for field number 0
total Alias for field number 2

Methods

count(...)
index((value, [start, ...) Raises ValueError if the value is not present.

binned
Alias for field number 1

label
Alias for field number 0

total
Alias for field number 2

omnibus.postprocess.celltally.main(argv=None)
Convert HDF5 cell tallies to CSV files.

17.3 omnibus.postprocess.collisions module

class omnibus.postprocess.collisions.CollisionDiagnostic(*args, **kwargs)
Bases: omnibus.container.Container

17.3. omnibus.postprocess.collisions module 141
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Collision diagnostic results for a problem.

The collision diagnostic calculates the average number of collisions per history, and average weight loss per
history, in each material, in each nuclide, for each reaction.

Attributes

data (pd.DataFrame or np.array) Record array of materials, zaids, MT numbers, and
collision/weight loss per history.

metadata (dict) Metadata associated with program run.
num_histories (float) Number of active particle histories sampled.
num_collisions (float) Total number of collisions during active histories.

Methods

extract(**kwargs) Extract a cross section view for a single key (matid/zaid/mt).
from_h5_group(group[, name, version])
integrate(key) Integrate collision results over all keys but the given one.
reindex_from_materials(mixtures) Change index from matid to material name.
summarize([threshold, file]) Print a summary of important collisions in this tally.

extract(**kwargs)
Extract a cross section view for a single key (matid/zaid/mt).

>>> df.extract(mt=2)

integrate(key)
Integrate collision results over all keys but the given one.

material_indexing
Return whether we’re indexed by ‘matid’ or ‘mat’.

reindex_from_materials(mixtures)
Change index from matid to material name.

This permanently changes the key name; you’ll have to reload the data if you want matids back.

>>> xmldata = OmnibusOutput.from_xml('output.xml')
>>> mixtures = xmldata.db['PHYSICS']['mixtures']
>>> coldat.reindex_from_materials(mixtures)

summarize(threshold=0.01, file=None)
Print a summary of important collisions in this tally.

This integrates over all materials, printing a list of reactions with the most collisions per history (over the
given threshold value).

Parameters threshold : float

Fraction of total collisions per history at which we truncate output of most frequent
nuclides per collisino

file : file-like object

The destination for the output stream. Default is sys.stdout.

142 Chapter 17. omnibus.postprocess package
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

omnibus.postprocess.collisions.main(argv=None)
Print a summary of the collision diagnostic.

You can optionally pass a dictionary of mixture names to change the database’s matids to mixture names.

17.4 omnibus.postprocess.compositions module

class omnibus.postprocess.compositions.Composition(*args, **kwargs)
Bases: omnibus.container.Container

A single composition.

Attributes

name (string) Composition name.
components (dict) Map of ZAID -> number densities (atoms / b-cm)

Methods

from_group(root) Build results for all compositions in the file.

classmethod from_group(root)
Build results for all compositions in the file.

class omnibus.postprocess.compositions.Comps(*args, **kwargs)
Bases: omnibus.container.Container

All composition data from an HDF5 file

Attributes

compositions (list of Composition) All compositions from the file
nuclides (list of Nuclide) All nuclides from the file
metadata (dict) Problem metadata.

Methods

from_group(root) Build results for all compositions in the file.

classmethod from_group(root)
Build results for all compositions in the file.

class omnibus.postprocess.compositions.Nuclide(*args, **kwargs)
Bases: omnibus.container.Container

A single nuclide property.

17.4. omnibus.postprocess.compositions module 143
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Attributes

name (string) Nuclide name.
mass (float) Atomic mass (g/mol)
zaid (int) SCALE nuclide identifier.

Methods

from_group(root[, zaid])

omnibus.postprocess.compositions.load(handle)
Read composition data from an HDF5 file.

17.5 omnibus.postprocess.cyltally module

class omnibus.postprocess.cyltally.CylMesh(*args, **kwargs)
Bases: omnibus.container.Container

Container for a cylindrical mesh.

The Cylindrical mesh is indexed with [r, z, theta].

Attributes

r (array) Radial mesh points.
z (array) Z-axis mesh points.
t (array) Azimuthal (theta) mesh points.
translation (array) Length-3 translation for the cylindrical mesh.
rotation (array) 3x3 rotation matrix for the cylindrical mesh.

cell_shape
The proper shape for cell-centered data associated with the mesh.

returns: (r, z, theta).

class omnibus.postprocess.cyltally.CylTallies(*args, **kwargs)
Bases: omnibus.postprocess.tally.Tallies

Collection of all cylindrical tallies present in a file.

Methods

from_group(root) Build results for all tallies in a “tallies” group.
iteritems()
iterkeys()
itervalues()

class omnibus.postprocess.cyltally.CylTallyMultiplierResult(*args, **kwargs)
Bases: omnibus.postprocess.tally.TallyMultiplierResult

144 Chapter 17. omnibus.postprocess package
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Cylindrical mesh tally results for a single tally multiplier.

The cylindrical multiplier tally result reshapes the data to conform with the cylindrical mesh: energy-integrated
tally results will have the indexing [r, z, theta], and energy-binned tallies are accessed like [e, r, z, theta].

A “multiplier” can be a reaction or a response.

Attributes

mesh (CylMesh) The mesh used in this tally

class omnibus.postprocess.cyltally.CylTallyResult(*args, **kwargs)
Bases: omnibus.postprocess.tally.TallyResult

Results for a single CYLMESH tally, with all its multipliers.

This corresponds to all the results from a single [TALLY][CYLMESH] block in an Omnibus input.

Attributes

mesh (CylMesh) The mesh used in this tally

Methods

write_to_silo : Write all the embedded tallies to a Silo file.

classmethod from_group(group, shared)
Build results for a single CYLMESH tally from an HDF5 file.

The version keyword is the Exnihilo revision number, used for backward compatibility.

classmethod from_group_v1(group, shared)
Backward compatibility: build tallies from older HDF5 files.

classmethod from_group_v4(group, shared)
Build results for a single CYLMESH tally from an HDF5 file.

The version keyword is the Exnihilo revision number, used for backward compatibility.

17.6 omnibus.postprocess.depletion module

class omnibus.postprocess.depletion.Concentrations(*args, **kwargs)
Bases: omnibus.postprocess.depletion.DepletionField

Concentrations of every nuclide in each cell at each step.

Attributes

data (array of doubles) Array of all concentrations. [step][cell][zaid]

17.6. omnibus.postprocess.depletion module 145
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Methods

to_num_dens : Convert concentrations from mol -> atoms/barn-cm.

class omnibus.postprocess.depletion.CrossSections(*args, **kwargs)
Bases: omnibus.postprocess.depletion.DepletionField

Collapsed ORGEN one-group cross sections.

These are provided for every ORIGEN zaid and mt in each cell at each step.

Attributes

xs(**kwargs) Extract a hyperslab view of the tally field data.

Methods

write_to_csv: Write the cross sections to a CSV file.

as_dataframe()
Convert the cross sections to a dataframe for easier processing.

The zaids and MTs are expanded into separate axes.

class omnibus.postprocess.depletion.DepletionField(*args, **kwargs)
Bases: omnibus.postprocess.field.Field

Store multi-D data with axes and labels.

Unlike the tally field, this doesn’t have variances, and they aren’t necessarily statistically calculated quantities.

Attributes

dims Dimension names for each axis.
location Get a description of where this field has been sliced from.
shape Get the shape of the data stored in this field..

Methods

as_dataframe() Convert the field to a Pandas dataframe for easier processing.
axis(dim) Get the axis index corresponding to the given name.
axis_index(dim) Get the axis index corresponding to the given dimension name.
from_group(group, key)
reorder(newdims) Reorder the indices of the data by dimension name.
xs(**kwargs) Extract a hyperslab view of the tally field data.
xs_by_index(**kwargs) Extract a hyperslab view of the tally field data.

class omnibus.postprocess.depletion.DepletionTally(*args, **kwargs)
Bases: omnibus.container.Container

Results from a depletion run.

146 Chapter 17. omnibus.postprocess package
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Attributes

num_dens ( array of doubles) Array of number densities. [step][cell][zaid]
concentra-
tions

( array of doubles) Array of concentrations. [step][cell][zaid]

volumes ( array of doubles) Array of volumes for all depletion regions. [cell]
power ( list of doubles) Array of power in all regions if depleting by power. [cell]
flux ( list of doubles) Array of flux in all regions if depleting by flux. [cell]
hm_fraction ( scalar double) The fraction of heavy metal mass in the system (for normalization)
metadata ( array) The metadata from the problem run.
simtime ( array of doubles) Array of running simulation time of the problem [step]
burnup ( array of doubles) Array of the running burnup of the problem (MWd/MTU) [step]
hm_mass ( scalar double) The total heavy metal mass in the system at beginning of calculation.
burn_time ( array of doubles) Array of the burn length per step size (days). [step]
decay_time ( array of doubles) Array of the decay length per time step (days). [step]
totpower ( array of doubles) Array of total power in the system for each time step. [step]
xs ( array of doubles) Array of collapsed 1-grp cross sections from ORIGEN.

[step][cell][zaid-mt]

Methods

at_step : Get a slice of the DepletionTally for a given time step number.
summarize : Print a summary of the burn data for every time step.

at_step(step)
Return a view of the tally data at a single depletion time step.

Returns DepletionTally (or subclass): tally result evaluated at the given time

step.

convert_to_time()
Return a new depletion tally with only physical time steps.

This effectively removes data for “predictor” steps if present, allowing easier comparison with other de-
pletion codes. It also replaces the “step” index with a “time” index.

It does not modify the original depletion tally.

Returns New depletion tally indexed by time.

classmethod from_group(root)
Build results for all depletion data.

classmethod from_group_v1(root)
Update version 1 depletion data to version 2.

This requires:

•Modifying dimension names to change nuclide to zaid

•Combining the ZAID and MT fields

classmethod from_group_v2(root)
Update version 2 depletion data to version 3.

This requires:

•Convert concentrations to number densities

17.6. omnibus.postprocess.depletion module 147
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

•Make cell labels in region data into root field

summarize(file=None)
Print a summary of the depletion burn data.

Parameters file : file-like object

The destination for the output stream. Default is sys.stdout.

class omnibus.postprocess.depletion.InputField(*args, **kwargs)
Bases: omnibus.postprocess.depletion.DepletionField

Store multi-D input data.

Attributes

dims Dimension names for each axis.
location Get a description of where this field has been sliced from.
shape Get the shape of the data stored in this field..

Methods

as_dataframe() Convert the field to a Pandas dataframe for easier processing.
axis(dim) Get the axis index corresponding to the given name.
axis_index(dim) Get the axis index corresponding to the given dimension name.
from_group(group, key)
reorder(newdims) Reorder the indices of the data by dimension name.
xs(**kwargs) Extract a hyperslab view of the tally field data.
xs_by_index(**kwargs) Extract a hyperslab view of the tally field data.

class omnibus.postprocess.depletion.NumberDensities(*args, **kwargs)
Bases: omnibus.postprocess.depletion.DepletionField

Number density of every nuclide in each cell at each step.

Attributes

data (array of doubles) Array of all number densities. [step][cell][zaid]

Methods

write_to_csv : Write the number densities to a CSV file.

class omnibus.postprocess.depletion.RegionData(*args, **kwargs)
Bases: omnibus.postprocess.depletion.DepletionField

Data about every depletion region at each step.

Attributes

148 Chapter 17. omnibus.postprocess package
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

dims Dimension names for each axis.
location Get a description of where this field has been sliced from.
shape Get the shape of the data stored in this field..

Methods

as_dataframe() Convert the field to a Pandas dataframe for easier processing.
axis(dim) Get the axis index corresponding to the given name.
axis_index(dim) Get the axis index corresponding to the given dimension name.
from_group(group, key)
reorder(newdims) Reorder the indices of the data by dimension name.
xs(**kwargs) Extract a hyperslab view of the tally field data.
xs_by_index(**kwargs) Extract a hyperslab view of the tally field data.

omnibus.postprocess.depletion.main(argv=None)
Write HDF5 depletion results to CSV files.

17.7 omnibus.postprocess.field module

This module provides a wrapper to Numpy arrays that stores multidimensional data, allowing it to be sliced, reordered,
and easily accessed.

class omnibus.postprocess.field.DataAxis(*args, **kwargs)
Bases: omnibus.container.Container

Metadata about an axis of a field.

The mesh must be sorted in ascending order for the index method to work.

Attributes

centers Obtain mesh values that match the centering of the data.
shape The actual shape of this axis’ mesh.

Methods

describe_index(i)
index(value) Find the index of a value on this mesh.

centers
Obtain mesh values that match the centering of the data.

index(value)
Find the index of a value on this mesh.

shape
The actual shape of this axis’ mesh.

17.7. omnibus.postprocess.field module 149
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

class omnibus.postprocess.field.Field(*args, **kwargs)
Bases: omnibus.container.Container

Multi-dimensional field for storing and accessing multi-D bulk data.

It enables advanced slicing of the data in this field. It should be subclassed to be used, and the _fields
attribute should be set to the relevant fields.

Attributes

axes (list of DataAxis) Attributes about each dimension/axis of the data.
hyper-
slice

(list of (axis, index) tuples.) If this is a view into larger tally data, the hyperslice is the list of axes
and values at which those dimensions are being evaluated.

Methods

as_dataframe() Convert the field to a Pandas dataframe for easier processing.
axis(dim) Get the axis index corresponding to the given name.
axis_index(dim) Get the axis index corresponding to the given dimension name.
reorder(newdims) Reorder the indices of the data by dimension name.
xs(**kwargs) Extract a hyperslab view of the tally field data.
xs_by_index(**kwargs) Extract a hyperslab view of the tally field data.

as_dataframe()
Convert the field to a Pandas dataframe for easier processing.

Fields are converted to series in the dataframe, and the axes are converted to a multi-index.

Note: It may be necessary to run call result.sortlevel(inplace=True) on the result to per-
form some Pandas operation. This is because some axes may not be lexicographically ordered.

axis(dim)
Get the axis index corresponding to the given name.

Examples

This enables easier access to meshes and the like.

>>> tal.axis('x').mesh

axis_index(dim)
Get the axis index corresponding to the given dimension name.

Examples

To collapse multi-dimensional data using the numpy.sum function, you can determine the appropriate
axis index using this method:

>>> tal.total.sum(axis=tal.axis_index("x"))

dims
Dimension names for each axis.

150 Chapter 17. omnibus.postprocess package
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

location
Get a description of where this field has been sliced from.

It will return an empty string if this is the full, original field.

reorder(newdims)
Reorder the indices of the data by dimension name.

Parameters newdims : list of strings

New dimension names.

Examples

This allows conversion of data stored as ZYXE to XYZE, etc. The input argument is a list of dimensions
that should end up in the relative order given:

>>> newvals = tal.reorder(("x","y"))

shape
Get the shape of the data stored in this field..

xs(**kwargs)
Extract a hyperslab view of the tally field data.

Input arguments are values on each axis, similar to the pandas “xs” function.

xs_by_index(**kwargs)
Extract a hyperslab view of the tally field data.

Input arguments must be integer indices, not values.

class omnibus.postprocess.field.LabelAxis(*args, **kwargs)
Bases: omnibus.container.Container

Metadata about an axis of a field that acts like labels.

This is currently used for tally multipliers and unions.

Attributes

centers
shape

Methods

describe_index(i)
index(value)

omnibus.postprocess.field.build_axes(group, dimnames, shape)
From an HDF5 group or dict, build a list of axes.

17.7. omnibus.postprocess.field module 151
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

17.8 omnibus.postprocess.manager module

class omnibus.postprocess.manager.JsonWriter
Bases: object

Write a nicer version of the XML output.

This writes a JSON version of the XML data entries.

Attributes

outputs

Methods

__call__(manager)
write_rst(w)

class omnibus.postprocess.manager.Manager(db, filename)
Bases: object

Manage output from an Omnibus run.

Attributes

db (dict) Dictionary of parsed XML output.
dirname (string) Directory enclosing the output.
basename (string) Name of output file without extensions.

Methods

finalize() Call to write an RST file after postprocesing.
from_xml(xml_output_path)
get_timing(block, timer) Return the node-zero time for the given timer in the given block.
process(p) Handle postprocessing.

finalize()
Call to write an RST file after postprocesing.

get_timing(block, timer)
Return the node-zero time for the given timer in the given block.

mixtures
Return mixtures if available, or None if not.

process(p)
Handle postprocessing.

shift_db
Return the SHIFT execution block database.

152 Chapter 17. omnibus.postprocess package
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

If depletion is enabled, this only returns the last shift DB.

17.9 omnibus.postprocess.meshtally module

class omnibus.postprocess.meshtally.Mesh(*args, **kwargs)
Bases: omnibus.container.Container

Container for a cartesian mesh.

The mesh is indexed with [x, y, z].

Attributes

x (array) X-axis mesh points.
y (array) Y-axis mesh points.
z (array) Z-axis mesh points.

Methods

from_group(group)

cell_shape
Return the proper shape for cell-centered data so it can be accessed with [x, y, z].

class omnibus.postprocess.meshtally.MeshTallies(*args, **kwargs)
Bases: omnibus.postprocess.tally.Tallies

Collection of all mesh tallies present in a file.

Methods

from_group(root) Build results for all tallies in a “tallies” group.
iteritems()
iterkeys()
itervalues()

class omnibus.postprocess.meshtally.MeshTallyMultiplierResult(*args, **kwargs)
Bases: omnibus.postprocess.tally.TallyMultiplierResult

Mesh tally results for a single tally multiplier.

The multiplier tally result reshapes the data to conform with the mesh: energy-integrated tally results will have
the indexing [x, y, z], and energy-binned tallies are accessed like [bin, x, y, z].

A “multiplier” can be a reaction or a response.

Attributes

mesh (Mesh) The mesh used in this tally

17.9. omnibus.postprocess.meshtally module 153
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

class omnibus.postprocess.meshtally.MeshTallyResult(*args, **kwargs)
Bases: omnibus.postprocess.tally.TallyResult

Results for a single MESH tally, with all its multipliers.

This corresponds to all the results from a single [TALLY][MESH] block in an Omnibus input.

Attributes

mesh (Mesh) The mesh used in this tally

Methods

at_step(step) Return a view of the tally data at a single depletion time step.
from_group(group, shared) Build results for a single MESH tally from an HDF5 file.
from_group_v1(group, shared) Backward compatibility: build tallies from older HDF5 files.
from_group_v2(group, shared)
from_group_v3(group, shared)
from_group_v4(group, shared) Build results for a single MESH tally from an HDF5 file.

classmethod from_group(group, shared)
Build results for a single MESH tally from an HDF5 file.

classmethod from_group_v1(group, shared)
Backward compatibility: build tallies from older HDF5 files.

classmethod from_group_v4(group, shared)
Build results for a single MESH tally from an HDF5 file.

17.10 omnibus.postprocess.rst module

class omnibus.postprocess.rst.RstBlockType
Bases: type

Metaclass used for easily generating RST writers for each block.

Methods

__call__(...) <==> x(...)
mro(() -> list) return a type’s method resolution order

17.11 omnibus.postprocess.sensitivity module

17.12 omnibus.postprocess.tally module

This module contains base classes for tally postprocessing.

class omnibus.postprocess.tally.BinAxis(*args, **kwargs)

154 Chapter 17. omnibus.postprocess package
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Bases: omnibus.container.Container

Metadata about an axis of a tally for multigroup data.

Attributes

shape

Methods

describe_index(i)
index(value)

class omnibus.postprocess.tally.BinBounds(*args, **kwargs)
Bases: omnibus.container.Container

Bin boundaries when tallying over energy or particle.

This includes energy bounds for all particle types. If no boundaries are present, bool(bb) will return False.

Examples

Since Omnibus tallies contain both neutron and photon data, one common requirement is to view tally data
from a single particle. For this purpose, the BinBounds class contains a slice_for_particle method,
which returns a Python slice object corresponding to a single particle type. For example, you can take an
energy-dependent tally in a single cell and plot only the neutron fluxes:

>>> bin_bounds = tally.bin_bounds
>>> slc = bin_bounds.slice_for_particle('n')
>>> plt.plot(bin_bounds.lower_bounds[slc], tally.mean[slc],
... drawtype='steps-lower')

Attributes

n (array or None) If the particle is being tallied, neutron bin boundaries in descending order. If not being
tallied, this is None.

p (array or None) If the particle is being tallied, photon bin boundaries in descending order. If not being
tallied, this is None.

Methods

describe_group(g)
from_group(group) Create a BinBounds from an HDF5 group.
labeled_groups([particle]) Particle and relative group labels for each stored bin.
num_groups(particle) Return number of groups for a given particle.
slice_for_particle(particle_type) Return a slice object that will give the range of absolute group indices for a particle.

17.12. omnibus.postprocess.tally module 155
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

bounds
Returns the tuple of group bounds (neutron, photon)

classmethod from_group(group)
Create a BinBounds from an HDF5 group.

Returns BinBounds object if bin boundaries are present, else None.

labeled_groups(particle=None)
Particle and relative group labels for each stored bin.

This generator method yields a tuple (particle type, relative group) for all groups of particle type particle
(or both if particle is None).

Parameters particle : int

Particle type (default None for both particles), one of NEUTRON or PHOTON.

lower_bounds
Get an array of lower energy bounds for all groups.

This is primarily useful when both photon and neutron groups are present, where the lower/upper bounds
have a discontinuity.

num_groups(particle)
Return number of groups for a given particle.

num_total_groups
The number of groups summed over all particles.

slice_for_particle(particle_type)
Return a slice object that will give the range of absolute group indices for a particle.

Use this to extract subsets of collapsed multigroup data, or use the “start” and “stop” attributes of the slice
object if you need those.

upper_bounds
Get an array of upper energy bounds for all groups.

This is primarily useful when both photon and neutron groups are present, where the lower/upper bounds
have a discontinuity.

class omnibus.postprocess.tally.DifferenceField(*args, **kwargs)
Bases: omnibus.postprocess.field.Field

Calculate the differences between two tallies.

This field stores the difference (relative error) between two tallies, and propagates the uncertainty between them.

The difference saved is:

diff =
mean

meanref
− 1

and the variance is:

𝜎2
diff =

[︂
mean

meanref

]︂2 [︂
𝜎2

mean2
+

𝜎2
ref

meanref

]︂
It accepts a threshold value for the reference data comparisons. Expected data points with a relative error greater
than or equal to this value will be ignored.

156 Chapter 17. omnibus.postprocess package
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Attributes

delta (array) The relative difference between the two given tallies.
var (array) The variances corresponding to the means.
axes (list of DataAxis) Attributes about each dimension/axis of the data.
hyper-
slice

(list of (axis, index) tuples.) If this is a view into larger tally data, the hyperslice is the list of axes
and values at which those dimensions are being evaluated.

Methods

as_dataframe() Convert the field to a Pandas dataframe for easier processing.
axis(dim) Get the axis index corresponding to the given name.
axis_index(dim) Get the axis index corresponding to the given dimension name.
from_tallies(reference, given[, re_threshold]) Build from two tally fields.
reorder(newdims) Reorder the indices of the data by dimension name.
xs(**kwargs) Extract a hyperslab view of the tally field data.
xs_by_index(**kwargs) Extract a hyperslab view of the tally field data.

classmethod from_tallies(reference, given, re_threshold=0.707)
Build from two tally fields.

class omnibus.postprocess.tally.SharedTallyData(*args, **kwargs)
Bases: omnibus.container.Container

Data shared by all tallies in a file.

This is mostly used in construction to pass problem metadata etc. between tallies. It may include data (such as
tally_name) that are changed depending on what tally is currently being processed.

Methods

from_group(root)

class omnibus.postprocess.tally.Tallies(*args, **kwargs)
Bases: omnibus.container.Container

Collection of all tallies present in a file.

Attributes

metadata : Information about the run that created this tally data.

Methods

from_group(root) Build results for all tallies in a “tallies” group.
iteritems()
iterkeys()
itervalues()

17.12. omnibus.postprocess.tally module 157
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

classmethod from_group(root)
Build results for all tallies in a “tallies” group.

class omnibus.postprocess.tally.TallyField(*args, **kwargs)
Bases: omnibus.postprocess.field.Field

Multi-dimensional field for storing and accessing bulk tally data.

This provides accessors for retrieving the originally stored mean and variance, as well as calculation methods
for returning relative error. Additionally, in the case of multi-dimensional data, it allows advanced slicing of the
data.

Attributes

mean (array (or float)) The mean values for this tally.
var (array (or float)) The variances corresponding to the means.
axes (list of DataAxis) Attributes about each dimension/axis of the data.
hyper-
slice

(list of (axis, index) tuples.) If this is a view into larger tally data, the hyperslice is the list of axes
and values at which those dimensions are being evaluated.

Methods

as_dataframe() Convert the field to a Pandas dataframe for easier processing.
axis(dim) Get the axis index corresponding to the given name.
axis_index(dim) Get the axis index corresponding to the given dimension name.
from_group(group, name)
reorder(newdims) Reorder the indices of the data by dimension name.
without_last_energy_bin() Return a new tally field with the last energy bin removed.
xs(**kwargs) Extract a hyperslab view of the tally field data.
xs_by_index(**kwargs) Extract a hyperslab view of the tally field data.

bin_bounds
If this is an energy-binned tally, return the bin bounds.

If not energy-binned (or a slice on the energy axis has already been taken), this will raise a KeyError.

re
Calculate relative error, returning inf if mean is zero.

This will return an array if the stored mean and variance are arrays.

re =

√
var

mean

without_last_energy_bin()
Return a new tally field with the last energy bin removed.

This is useful for getting Shift, Monaco, and MCNP tallies to match (because the latter two implicitly add
a cutoff-to-lowest-energy bin).

If not energy-binned (or a slice on the energy axis has already been taken), this will raise a KeyError.

class omnibus.postprocess.tally.TallyMultiplierResult(*args, **kwargs)
Bases: omnibus.container.Container

Tally results for a single tally multiplier.

158 Chapter 17. omnibus.postprocess package
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

This contains the final values of multigroup and total data.

Attributes

name (string) Short label of this multiplier.
description (string) Longer description of the multiplier.
bin_bounds (BinBounds) Bin boundaries for multigroup tallies, or None for tallies without binning.
total (TallyField) Energy- and particle-integrated means and variances for this multiplier.
binned (TallyField) Energy-binned means and variances for this multiplier.

has_energy_bins
Whether this multiplier has energy-binned tallies.

class omnibus.postprocess.tally.TallyResult(*args, **kwargs)
Bases: omnibus.container.Container

Set of results from a single tally.

This contains TallyMultiplierResult objects, which contain the data for each multiplier.

Attributes

has_energy_bins Whether this multiplier has energy-binned tallies.

name (string) Tally name.
descrip-
tion

(string) User-specified description; defaults to value of name.

bin_bounds (BinBounds) Bin boundaries for multigroup tallies. Evaluates as False if no boundaries are
present.

tallies (dict) Multiplier results for this tally, keyed by short name.
metadata (dict) Execution metadata associated with this tally: problem ID, etc.

Methods

at_step(step) Return a view of the tally data at a single depletion time step.
from_group(group, shared[, reorder]) Build results for a single tally from an HDF5 group.

at_step(step)
Return a view of the tally data at a single depletion time step.

If depletion is disabled, this will raise an error.

Returns Tally (or subclass): tally result evaluated at the given time step.

classmethod from_group(group, shared, reorder=None)
Build results for a single tally from an HDF5 group.

It uses slices of the multi-tally data to create multiplier results.

has_energy_bins
Whether this multiplier has energy-binned tallies.

multipliers
Get a list of multipliers used in this tally.

17.12. omnibus.postprocess.tally module 159
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

num_multipliers
Number of multipliers.

omnibus.postprocess.tally.get_tally_version(metadata)
Return the tally compatibility version number.

This version number is only used internally and is not exposed to the user.

omnibus.postprocess.tally.load_tallies_from_h5(handle, Tallies_cls)
Load standard-format replicated HDF5 tallies from a file.

This prints out appropriate metadata while loading.

17.13 omnibus.postprocess.tally_plotter module

17.14 omnibus.postprocess.utils module

Common functions for postprocessing.

exception omnibus.postprocess.utils.NoDataException
Bases: exceptions.Exception

An exception class used by postprocessing.

This indicates that no suitable data is present in an output file, but that this is not an abnormal condition.

class omnibus.postprocess.utils.PostProcessOutput
Bases: object

Abstract base class for postprocess outputters.

A postprocessor output should raise a NoDataException in the constructor if inapplicable. It should have a
“description” class attribute to provide a useful message if postprocessing fails. It should also have a “block”
attribute for determining where in the RST output it should be called.

If postprocessing succeeds, the object will be retained so that it can provide more informative output to the user
at the end of the run.

Attributes

outputs

block
description

Methods

__call__(manager)
write_rst(rstwriter)

omnibus.postprocess.utils.float_from_h5(value)
Extract a floating point value from an HDF5 file.

160 Chapter 17. omnibus.postprocess package
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

This is required because older HDF5 implementations wrote a length-1 array instead of a scalar.

omnibus.postprocess.utils.group_to_dict(h5_root)
Utility function for converting HDF5 files to dictionaries.

This is useful for creating unit tests that will run on systems without HDF5 present.

omnibus.postprocess.utils.h5dump(path)
Print an HDF5 file as a nicely formatted string.

omnibus.postprocess.utils.int_from_h5(value)
Extract an integer from an HDF5 file.

This is required because older HDF5 implementations wrote a length-1 array instead of a scalar.

omnibus.postprocess.utils.load_metadata(md)
Load metadata from the ‘metadata’ group of an HDF5 file.

The resulting dictionary contains version info,

omnibus.postprocess.utils.load_pyplot()
A function to lazily load the Python plotter.

omnibus.postprocess.utils.string_from_h5(value)
Extract a null-terminated string from an HDF5 field.

17.15 Module contents

The user-accessible package for analysis of Omnibus output.

This postprocessing package provides utility functions and interfaces for processing data from an Omnibus run.

17.15. Module contents 161
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

162 Chapter 17. omnibus.postprocess package
CASL-U-2015-0079-000



Part IV

User Guide: Insilico

163
CASL-U-2015-0079-000



CASL-U-2015-0079-000



CHAPTER

EIGHTEEN

INTRODUCTION

The Insilico package provides a front-end (neutronics) and libraries for running reactor applications using CASL’s
VERA input specification. This specification is documented in VERAInExt/verain/docs/verain_UM.pdf.
The VERAInExt repository also contains the VERA input pre-processor. This repository is available through CASL.
An example VERA input for a 17× 17 PWR assembly is as follows:

1 [CASEID]
2 title 'CASL AMA Problem 3a - Single 17x17 Assembly - Public'
3

4 [STATE]
5 power 0.0 ! %
6 tinlet 620.33 ! F - 600K
7 tfuel 600.0 ! K
8 boron 1300 ! ppmB
9 modden 0.743 ! g/cc

10 sym qtr
11 feedback off
12

13 [CORE]
14 size 1 ! one assembly
15 rated 17.67 0.6823 ! MW, Mlbs/hr
16 apitch 21.5
17 height 406.337
18

19 core_shape
20 1
21

22 assm_map
23 ASSY
24

25 lower_plate ss 5.0 0.5 ! mat, thickness, vol frac
26 upper_plate ss 7.6 0.5
27 lower_ref mod 20.0 1.0
28

29 bc_rad reflecting
30

31 mat he 0.0001786
32 mat zirc 6.56 zirc4
33 mat inc 8.19
34 mat ss 8.0
35

36 [ASSEMBLY]
37 title "Westinghouse 17x17"
38 npin 17
39 ppitch 1.26

165
CASL-U-2015-0079-000

https://casl-dev.ornl.gov/wiki/index.php/Main_Page


Exnihilo Documentation, Release 5.3 (Dev)

40

41 fuel U31 10.257 94.5 / 3.1
42

43 cell 1 0.4096 0.418 0.475 / U31 he zirc
44 cell 3 0.561 0.602 / mod zirc ! guide/instrument tube
45 cell 4 0.418 0.475 / he zirc ! plenum
46 cell 5 0.475 / zirc ! end plug
47

48 lattice FUEL
49 3
50 1 1
51 1 1 1
52 3 1 1 3
53 1 1 1 1 1
54 1 1 1 1 1 3
55 3 1 1 3 1 1 1
56 1 1 1 1 1 1 1 1
57 1 1 1 1 1 1 1 1 1
58

59 lattice PLEN
60 3
61 4 4
62 4 4 4
63 3 4 4 3
64 4 4 4 4 4
65 4 4 4 4 4 3
66 3 4 4 3 4 4 4
67 4 4 4 4 4 4 4 4
68 4 4 4 4 4 4 4 4 4
69

70 lattice PLUG
71 3
72 5 5
73 5 5 5
74 3 5 5 3
75 5 5 5 5 5
76 5 5 5 5 5 3
77 3 5 5 3 5 5 5
78 5 5 5 5 5 5 5 5
79 5 5 5 5 5 5 5 5 5
80

81 axial ASSY 10.281
82 PLUG 11.951
83 FUEL 377.711
84 PLEN 393.711
85 PLUG 395.381
86

87 grid END inc 1017 3.866
88 grid MID zirc 875 3.810
89

90 grid_axial
91 END 13.884
92 MID 75.2
93 MID 127.4
94 MID 179.6
95 MID 231.8
96 MID 284.0
97 MID 336.2

166 Chapter 18. Introduction
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

98 END 388.2
99

100 lower_nozzle ss 6.053 6250.0 ! mat, height, mass (g)
101 upper_nozzle ss 8.827 6250.0 ! mat, height, mass (g)
102

103 [EDITS]
104 axial_edit_bounds
105 11.951
106 15.817
107 24.028
108 32.239
109 40.45
110 48.662
111 56.873
112 65.084
113 73.295
114 77.105
115 85.17
116 93.235
117 101.3
118 109.365
119 117.43
120 125.495
121 129.305
122 137.37
123 145.435
124 153.5
125 161.565
126 169.63
127 177.695
128 181.505
129 189.57
130 197.635
131 205.7
132 213.765
133 221.83
134 229.895
135 233.705
136 241.77
137 249.835
138 257.9
139 265.965
140 274.03
141 282.095
142 285.905
143 293.97
144 302.035
145 310.1
146 318.165
147 326.23
148 334.295
149 338.105
150 346.0262
151 353.9474
152 361.8686
153 369.7898
154 377.711
155

167
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

156 [INSILICO]
157 cell_homogenize true
158 eq_set spn_fv
159 SPN_order 3
160 Pn_order 1
161 tolerance 1e-6
162 dimension 3
163 Pn_correction true
164

165 mesh 2
166 max_delta_z 1.27
167 num_groups 23
168

169 mat_library casl_comp_r2.sh5
170 xs_library lib252_hetbondoneabs-noabssigp
171

172 ! pin_partitioning true
173 num_blocks_i 4
174 num_blocks_j 4
175 num_z_blocks 1
176 num_sets 1
177

178 silo_output p3
179

180 new_grp_bounds
181 8.2085e+05
182 1.1109e+05
183 5.5308e+03
184 1.8644e+02
185 3.7612e+01
186 3.5379e+01
187 2.7697e+01
188 2.1684e+01
189 2.0397e+01
190 1.5968e+01
191 7.1500e+00
192 6.7000e+00
193 6.3000e+00
194 1.0970e+00
195 1.0450e+00
196 9.5000e-01
197 3.5000e-01
198 2.0600e-01
199 1.0700e-01
200 5.8000e-02
201 2.5000e-02
202 1.0000e-02
203 1.0000e-05

In order to execute this problem through any VERA-supported application (including Insilico), it must be processed
into an XML file. The VERAInExt react2xml.pl script is used to convert the ASCII input file to code-readable XML:

$ perl react2xml.pl 3a.inp 3a.xml

The XML can be edited directly by the user (you better know what you’re doing!) as this provides a method for power
users to directly affect code control settings that are not normally exposed at the pre-process level.

The XML file can then be fed to any VERA executable. The VERA executable provided by Insilico is neutronics. It
does a full neutronics simulation on the specified input (ie. no TH-coupling, etc.). There are VERA drivers that run

168 Chapter 18. Introduction
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

coupled simulations that are available through CASL.

In order to run neutronics do the following:

$ mpirun -np 4 ./neutronics -i 3a.xml

The neutronics simulation performs the following basic steps:

1. build problem model

2. build problem mesh or geometry

3. load and process cross section

4. run transport

5. produce integrated pin-power and flux output

Insilico currently supports 3 transport options from the Exnihilo packages Denovo and Shift

• Denovo 𝑆𝑁 (discrete ordinates)

• Denovo 𝑆𝑃𝑁 (simplified spherical harmonics)

• Shift Monte Carlo

The complete parameter list specification is available internally for power users.

169
CASL-U-2015-0079-000

https://casl-dev.ornl.gov/wiki/index.php/Main_Page
https://eddie.ornl.gov/wiki/index.php/Input_Parameter_List


Exnihilo Documentation, Release 5.3 (Dev)

170 Chapter 18. Introduction
CASL-U-2015-0079-000



Part V

Appendices

171
CASL-U-2015-0079-000



CASL-U-2015-0079-000



CHAPTER

NINETEEN

SHIFT ACCEPTANCE TEST DESCRIPTIONS

19.1 Leakage test

These tests compare the leakage out of a 23.7 cm thick spherical shell with an inner radius of 1.3 cm in a void for
various coupled neutron-photon problems. An isotropic Cf-252 Watt spectrum neutron spherical source with radius
0.1 cm is located at the center of the shell. An energy-binned tally calculates the neutron and photon flux exiting the
sphere in a 1 cm thick spherical shell void region located at distance of 99.9 cm from the center of the problem.

Shift is run in fixed-source mode simulating 1e7 particle histories using continuous-energy and multigroup physics for
various nuclides. A Shift reference solution for all of these tests is used to compare that the flux in each bin for each
test is within 4 standard deviations of the Shift reference flux.

If the matplotlib module is installed these tests produce plots of the binned flux compared to the Shift reference,
Monaco, and MCNP5 results. They also produce a plot of the flux ratios with the Shift reference result and a histogram
plot of the standard deviation difference between the Monaco flux result and the test result in each bin.

19.2 Transmission tests

Requirements: numpy and h5py modules

These tests compare the simulated flux in a detector for neutron-only and photon-only streaming problems produced
by Shift. The problem consists of a 2 mfp thick slab in a void with an incident mono-energetic beam on the left of the
slab. The energy of the beam varies, along with the material number density of the slab to make it 2 mfp thick (the
slab has a fixed width of 5 cm). The total flux is tallied in a 2 cm block region to the right of the slab.

The slab for the neutron-only tests consists of a single nuclide with varying number densities. The slab for the photon-
only tests consists of a single element with varying number densities.

Shift runs a fixed-source problem with 1e6 particle histories for each test. Currently, a Shift reference result for the
flux in the detector region has been generated in serial for each test and these values are compared to the result from
each test. The flux should lie within 3 standard deviations of the reference Shift results regardless of the number of
processors the problem is run.

19.3 Material scaling test

173
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

174 Chapter 19. Shift Acceptance Test Descriptions
CASL-U-2015-0079-000



CHAPTER

TWENTY

DENOVO ACCEPTANCE TEST DESCRIPTIONS

20.1 Adjoint SN transport test

20.2 Deterministic first-collision test

20.3 Symmetry test

20.4 Two-dimensional transport test

20.5 AMPX plotting test

175
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

176 Chapter 20. Denovo Acceptance Test Descriptions
CASL-U-2015-0079-000



CHAPTER

TWENTYONE

STYLE GUIDE

This chapter gives some grammar, spelling, and abbreviation standards to adopt when putting together any sort of
publication, presentation, or poster related to Exnihilo.

21.1 Code/Package/Library name capitalization

First, use the following capitalization when referring to code, package, and library names (in alphabetical order for
easy reference).

Table 21.1: Capitalization Standards of Entities

Exnihilo pack-
age

Code Library Package Program Machine

Denovo ADVANTG BLAS Atlas CASL Remus
Exnihilo AMPX LAPACK Kokkos VERA Romulus
Insilico DagMC SuperLU ORIGEN OLCF Summit
Nemesis KENO TriBITS XSProc OIC Titan
Omnibus Lava
Shift MCNP
Transcore MPACT

OpenMC
Profugus
SCALE
Trilinos
VESTA

For a list and capitalization standard of all Trilinos packages, please see its online documentation:
http://trilinos.org/packages/

21.2 Commonly used abbreviations/acronyms

Second, the following table gives abbreviations and acronyms we commonly use when referring to terms, methods, or
packages.

177
CASL-U-2015-0079-000

http://trilinos.org/packages/


Exnihilo Documentation, Release 5.3 (Dev)

Table 21.2: Common Abbreviations

Abbreviation What does it mean
API Application Programming Interface
CSV Comma-Separated Value
CADIS Consistent Adjoint-Driven Importance Sampling
CDF Cumulative Distribution Function
CPU Central Processing Unit
ENDF Evaluated Nuclear Data Files
GMRES Generalized Minimum Residual
GPU General Processing Unit
HDF5 Hierarchical Data Format 5
HPC High-Performance Computing
HZP Hot Zero Power
KERMA Kinetic Energy Released per Unit Mass
LWR Light Water Reactor
MC Monte Carlo
MG Multigroup
MOC Method of Characteristics
MSOD Multiple-Set Overlapping Domain
PWR Pressurized Water Reactor
RMS Root Mean Squared
RTK Reactor ToolKit
SCE SCALE Continuous Energy
SMG SCALE Multigroup
XML Extended Markup Language

21.3 Commonly Used Terminology

Third, the following words or phrases are commonly used in our publications and these are the standards we have
adopted when using them.

178 Chapter 21. Style Guide
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

Table 21.3: Common Abbreviations

Term Usage Example
continuous-
energy

adjective I love continuous-energy data.

domain-
decomposed,
domain-
replicated

adjective We support domain-decomposed and domain-replicated geometries.

front end noun The Omnibus front end is awesome!
high-
performance

adjective Use high-performance computers.

intra-set, intra-
block

adjective Our code uses intra-set and intra-block communication.

massively paral-
lel

adjective We have a massively parallel code.

multigroup adjective I also love multigroup data.
multiset adjective Multiset decomposition is best.
object-oriented adjective Only use object-oriented languages.
path length noun Tallying path length can be hard.
pincell noun Reactor assemblies have pincells.
preprocess ,
postprocess

adjective, verb We can use Omnibus to preprocess and postprocess results.

run time noun Parameters are set at run time.

21.3. Commonly Used Terminology 179
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

180 Chapter 21. Style Guide
CASL-U-2015-0079-000



CHAPTER

TWENTYTWO

LICENSE INFORMATION

The following licenses may apply to code distributed with Exnihilo.

22.1 Trilinos

BSD code in the Trilinos library licensed by Sandia contains the following notice:

Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
license for use of this work by or on behalf of the U.S. Government.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the Corporation nor the names of the
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22.2 Google Test

Google Test is a test harness used by Exnihilo.

181
CASL-U-2015-0079-000

https://code.google.com/p/googletest/


Exnihilo Documentation, Release 5.3 (Dev)

Copyright 2008, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

182 Chapter 22. License Information
CASL-U-2015-0079-000



CHAPTER

TWENTYTHREE

ACKNOWLEDGMENTS

23.1 Copyright

Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the
U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United
States Government purposes.

183
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

184 Chapter 23. Acknowledgments
CASL-U-2015-0079-000



PYTHON MODULE INDEX

o
omnibus, ??
omnibus.container, ??
omnibus.converters, 138
omnibus.converters.mctal, 133
omnibus.converters.meshtal, 137
omnibus.converters.monaco, 138
omnibus.converters.opus, 138
omnibus.converters.triton, 138
omnibus.converters.vesta, 138
omnibus.documentation, ??
omnibus.exceptions, ??
omnibus.lexer, ??
omnibus.lexer.build, ??
omnibus.lexer.preprocess, ??
omnibus.lexer.tokenize, ??
omnibus.logger, ??
omnibus.omn, ??
omnibus.omn.composition, ??
omnibus.omn.denovo, ??
omnibus.omn.depletion, ??
omnibus.omn.geometry, ??
omnibus.omn.manualww, ??
omnibus.omn.physics, ??
omnibus.omn.problem, ??
omnibus.omn.response, ??
omnibus.omn.root, ??
omnibus.omn.run, ??
omnibus.omn.shift, ??
omnibus.omn.source, ??
omnibus.omn.tally, ??
omnibus.parser, ??
omnibus.parser.abstract, ??
omnibus.parser.applicability, ??
omnibus.parser.commands, ??
omnibus.parser.database, ??
omnibus.parser.db_builder, ??
omnibus.parser.defaulter, ??
omnibus.parser.listvalidator, ??
omnibus.parser.parameter, ??
omnibus.parser.subdbrelation, ??
omnibus.parser.validator, ??

omnibus.postprocess, 161
omnibus.postprocess.celltally, 139
omnibus.postprocess.collisions, 141
omnibus.postprocess.compositions, 143
omnibus.postprocess.cyltally, 144
omnibus.postprocess.depletion, 145
omnibus.postprocess.field, 149
omnibus.postprocess.manager, 152
omnibus.postprocess.meshtally, 153
omnibus.postprocess.rst, 154
omnibus.postprocess.sensitivity, 154
omnibus.postprocess.tally, 154
omnibus.postprocess.tally_plotter, 160
omnibus.postprocess.utils, 160
omnibus.rstwriter, ??
omnibus.runtpe, ??
omnibus.scale, ??
omnibus.scripts, ??
omnibus.scripts.generate_mts, ??
omnibus.scripts.omnibus_post, ??
omnibus.scripts.omnibus_pre, ??
omnibus.scripts.omnibus_run, ??
omnibus.scripts.read_nuclides, ??
omnibus.scripts.vacuum_omnibus_input,

??
omnibus.scripts.xml_to_omn, ??
omnibus.symmetry, ??
omnibus.teedprocess, ??
omnibus.testing, ??
omnibus.testing.regression, ??
omnibus.testing.unittest, ??
omnibus.teuchos, ??
omnibus.teuchos.reader, ??
omnibus.teuchos.writer, ??
omnibus.textfile, ??
omnibus.timer, ??
omnibus.utils, ??
omnibus.writers, ??
omnibus.writers.ascii, ??
omnibus.writers.json, ??
omnibus.writers.teuchos, ??
omnibus.writers.yaml, ??

185
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

omnibus.yamlload, ??

186 Python Module Index
CASL-U-2015-0079-000



INDEX

Symbols
-b dir

command line option, 24
-c dir

command line option, 24
-m

command line option, 24
-n

command line option, 24
-p dir

command line option, 24
-s sysname

command line option, 24
-t variant

command line option, 24
-u

command line option, 24

A
as_dataframe() (omnibus.postprocess.depletion.CrossSections

method), 146
as_dataframe() (omnibus.postprocess.field.Field method),

150
assertDataEqual() (TestCase method), 42
assertSoftEquiv() (TestCase method), 43
assertTextEqual() (TestCase method), 42
assertXmlFilesEqual() (TestCase method), 43
at_step() (omnibus.postprocess.depletion.DepletionTally

method), 147
at_step() (omnibus.postprocess.tally.TallyResult method),

159
axis() (omnibus.postprocess.field.Field method), 150
axis_index() (omnibus.postprocess.field.Field method),

150

B
bin_bounds (omnibus.converters.mctal.McnpTallyField

attribute), 136
bin_bounds (omnibus.postprocess.tally.TallyField at-

tribute), 158
BinAxis (class in omnibus.postprocess.tally), 154
BinBounds (class in omnibus.postprocess.tally), 155

binned (omnibus.postprocess.celltally.SingleTallyContainer
attribute), 141

bounds (omnibus.postprocess.tally.BinBounds attribute),
156

build_axes() (in module omnibus.postprocess.field), 151

C
cell_shape (omnibus.postprocess.cyltally.CylMesh

attribute), 144
cell_shape (omnibus.postprocess.meshtally.Mesh at-

tribute), 153
cells (omnibus.converters.mctal.McnpTallyField at-

tribute), 136
CellTallies (class in omnibus.postprocess.celltally), 139
CellTallyMultiplierResult (class in om-

nibus.postprocess.celltally), 139
CellTallyResult (class in omnibus.postprocess.celltally),

139
centers (omnibus.postprocess.field.DataAxis attribute),

149
CollisionDiagnostic (class in om-

nibus.postprocess.collisions), 141
command line option

-b dir, 24
-c dir, 24
-m, 24
-n, 24
-p dir, 24
-s sysname, 24
-t variant, 24
-u, 24

Composition (class in om-
nibus.postprocess.compositions), 143

Comps (class in omnibus.postprocess.compositions), 143
Concentrations (class in omnibus.postprocess.depletion),

145
convert_to_time() (om-

nibus.postprocess.depletion.DepletionTally
method), 147

CrossSections (class in omnibus.postprocess.depletion),
146

CylMesh (class in omnibus.postprocess.cyltally), 144

187
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

CylTallies (class in omnibus.postprocess.cyltally), 144
CylTallyMultiplierResult (class in om-

nibus.postprocess.cyltally), 144
CylTallyResult (class in omnibus.postprocess.cyltally),

145

D
DataAxis (class in omnibus.postprocess.field), 149
DepletionField (class in omnibus.postprocess.depletion),

146
DepletionTally (class in omnibus.postprocess.depletion),

146
DifferenceField (class in omnibus.postprocess.tally), 156
dims (omnibus.postprocess.field.Field attribute), 150

E
energy_bins (omnibus.converters.meshtal.McnpMeshTallyResult

attribute), 137
EXPECT_SOFT_EQ (C macro), 40
EXPECT_SOFTEQ (C macro), 40
EXPECT_VEC_EQ (C macro), 40
EXPECT_VEC_SOFTEQ (C macro), 41
extract() (omnibus.postprocess.collisions.CollisionDiagnostic

method), 142

F
Field (class in omnibus.postprocess.field), 149
finalize() (omnibus.postprocess.manager.Manager

method), 152
float_from_h5() (in module omnibus.postprocess.utils),

160
from_group() (omnibus.postprocess.celltally.CellTallyResult

class method), 140
from_group() (omnibus.postprocess.compositions.Composition

class method), 143
from_group() (omnibus.postprocess.compositions.Comps

class method), 143
from_group() (omnibus.postprocess.cyltally.CylTallyResult

class method), 145
from_group() (omnibus.postprocess.depletion.DepletionTally

class method), 147
from_group() (omnibus.postprocess.meshtally.MeshTallyResult

class method), 154
from_group() (omnibus.postprocess.tally.BinBounds

class method), 156
from_group() (omnibus.postprocess.tally.Tallies class

method), 158
from_group() (omnibus.postprocess.tally.TallyResult

class method), 159
from_group_v1() (omnibus.postprocess.celltally.CellTallyResult

class method), 140
from_group_v1() (omnibus.postprocess.cyltally.CylTallyResult

class method), 145

from_group_v1() (omnibus.postprocess.depletion.DepletionTally
class method), 147

from_group_v1() (omnibus.postprocess.meshtally.MeshTallyResult
class method), 154

from_group_v2() (omnibus.postprocess.celltally.CellTallyResult
class method), 140

from_group_v2() (omnibus.postprocess.depletion.DepletionTally
class method), 147

from_group_v3() (omnibus.postprocess.celltally.CellTallyResult
class method), 140

from_group_v4() (omnibus.postprocess.celltally.CellTallyResult
class method), 140

from_group_v4() (omnibus.postprocess.cyltally.CylTallyResult
class method), 145

from_group_v4() (omnibus.postprocess.meshtally.MeshTallyResult
class method), 154

from_tallies() (omnibus.postprocess.tally.DifferenceField
class method), 157

G
get_tally_version() (in module om-

nibus.postprocess.tally), 160
get_timing() (omnibus.postprocess.manager.Manager

method), 152
group_to_dict() (in module omnibus.postprocess.utils),

161

H
h5dump() (in module omnibus.postprocess.utils), 161
has_energy_bins (omnibus.postprocess.tally.TallyMultiplierResult

attribute), 159
has_energy_bins (omnibus.postprocess.tally.TallyResult

attribute), 159

I
index() (omnibus.converters.mctal.McnpAxis method),

134
index() (omnibus.postprocess.field.DataAxis method),

149
InputField (class in omnibus.postprocess.depletion), 148
int_from_h5() (in module omnibus.postprocess.utils), 161
integrate() (omnibus.postprocess.collisions.CollisionDiagnostic

method), 142

J
JsonWriter (class in omnibus.postprocess.manager), 152

K
Kcode (class in omnibus.converters.mctal), 133
keff (omnibus.converters.mctal.Kcode attribute), 134
keff_fom (omnibus.converters.mctal.Kcode attribute),

134
keff_stdev (omnibus.converters.mctal.Kcode attribute),

134

188 Index
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

L
label (omnibus.postprocess.celltally.SingleTallyContainer

attribute), 141
LabelAxis (class in omnibus.postprocess.field), 151
labeled_groups() (omnibus.postprocess.tally.BinBounds

method), 156
load() (in module omnibus.postprocess.compositions),

144
load() (omnibus.converters.mctal.Reader method), 136
load_metadata() (in module omnibus.postprocess.utils),

161
load_pyplot() (in module omnibus.postprocess.utils), 161
load_tallies_from_h5() (in module om-

nibus.postprocess.tally), 160
location (omnibus.postprocess.field.Field attribute), 150
lower_bounds (omnibus.postprocess.tally.BinBounds at-

tribute), 156

M
main() (in module omnibus.postprocess.celltally), 141
main() (in module omnibus.postprocess.collisions), 142
main() (in module omnibus.postprocess.depletion), 149
Manager (class in omnibus.postprocess.manager), 152
material_indexing (om-

nibus.postprocess.collisions.CollisionDiagnostic
attribute), 142

McnpAxis (class in omnibus.converters.mctal), 134
McnpCellTallies (class in omnibus.converters.mctal), 134
McnpCellTallyResult (class in om-

nibus.converters.mctal), 135
McnpMeshTallies (class in omnibus.converters.meshtal),

137
McnpMeshTallyResult (class in om-

nibus.converters.meshtal), 137
McnpTallyField (class in omnibus.converters.mctal), 135
Mesh (class in omnibus.postprocess.meshtally), 153
MeshTallies (class in omnibus.postprocess.meshtally),

153
MeshTallyMultiplierResult (class in om-

nibus.postprocess.meshtally), 153
MeshTallyResult (class in om-

nibus.postprocess.meshtally), 153
mixtures (omnibus.postprocess.manager.Manager at-

tribute), 152
MonacoCellTallyResult (class in om-

nibus.converters.monaco), 138
multipliers (omnibus.postprocess.tally.TallyResult at-

tribute), 159

N
NoDataException, 160
Nuclide (class in omnibus.postprocess.compositions),

143

num_groups() (omnibus.postprocess.tally.BinBounds
method), 156

num_histories_per_cycle (om-
nibus.converters.mctal.Kcode attribute),
134

num_multipliers (omnibus.postprocess.tally.TallyResult
attribute), 159

num_total_groups (omnibus.postprocess.tally.BinBounds
attribute), 156

num_unions (omnibus.postprocess.celltally.CellTallyMultiplierResult
attribute), 139

num_unions (omnibus.postprocess.celltally.CellTallyResult
attribute), 140

NumberDensities (class in om-
nibus.postprocess.depletion), 148

O
omnibus.converters (module), 138
omnibus.converters.mctal (module), 133
omnibus.converters.meshtal (module), 137
omnibus.converters.monaco (module), 138
omnibus.converters.opus (module), 138
omnibus.converters.triton (module), 138
omnibus.converters.vesta (module), 138
omnibus.postprocess (module), 161
omnibus.postprocess.celltally (module), 139
omnibus.postprocess.collisions (module), 141
omnibus.postprocess.compositions (module), 143
omnibus.postprocess.cyltally (module), 144
omnibus.postprocess.depletion (module), 145
omnibus.postprocess.field (module), 149
omnibus.postprocess.manager (module), 152
omnibus.postprocess.meshtally (module), 153
omnibus.postprocess.rst (module), 154
omnibus.postprocess.sensitivity (module), 154
omnibus.postprocess.tally (module), 154
omnibus.postprocess.tally_plotter (module), 160
omnibus.postprocess.utils (module), 160

P
PostProcessOutput (class in omnibus.postprocess.utils),

160
PRINT_EXPECTED (C macro), 41
process() (omnibus.postprocess.manager.Manager

method), 152

R
re (omnibus.postprocess.tally.TallyField attribute), 158
read_values() (omnibus.converters.mctal.Reader

method), 136
Reader (class in omnibus.converters.mctal), 136
RegionData (class in omnibus.postprocess.depletion), 148

Index 189
CASL-U-2015-0079-000



Exnihilo Documentation, Release 5.3 (Dev)

reindex_from_materials() (om-
nibus.postprocess.collisions.CollisionDiagnostic
method), 142

reorder() (omnibus.postprocess.field.Field method), 151
RstBlockType (class in omnibus.postprocess.rst), 154

S
shape (omnibus.converters.mctal.McnpAxis attribute),

134
shape (omnibus.postprocess.field.DataAxis attribute), 149
shape (omnibus.postprocess.field.Field attribute), 151
SharedCellTallyData (class in om-

nibus.postprocess.celltally), 140
SharedCellTallyMultiplierData (class in om-

nibus.postprocess.celltally), 141
SharedTallyData (class in omnibus.postprocess.tally), 157
shift_db (omnibus.postprocess.manager.Manager at-

tribute), 152
SingleTallyContainer (class in om-

nibus.postprocess.celltally), 141
slice_for_particle() (om-

nibus.postprocess.tally.BinBounds method),
156

string_from_h5() (in module omnibus.postprocess.utils),
161

summarize() (omnibus.postprocess.celltally.CellTallyResult
method), 140

summarize() (omnibus.postprocess.collisions.CollisionDiagnostic
method), 142

summarize() (omnibus.postprocess.depletion.DepletionTally
method), 148

T
Tallies (class in omnibus.postprocess.tally), 157
tallies (omnibus.converters.mctal.Reader attribute), 136
TallyField (class in omnibus.postprocess.tally), 158
TallyMultiplierResult (class in om-

nibus.postprocess.tally), 158
TallyResult (class in omnibus.postprocess.tally), 159
Tfc (class in omnibus.converters.mctal), 136
total (omnibus.postprocess.celltally.SingleTallyContainer

attribute), 141

U
upper_bounds (omnibus.postprocess.tally.BinBounds at-

tribute), 156

V
var (omnibus.converters.mctal.McnpTallyField attribute),

136
version (omnibus.converters.mctal.Reader attribute), 136

W
without_last_energy_bin() (om-

nibus.postprocess.tally.TallyField method),
158

X
xs() (omnibus.postprocess.field.Field method), 151
xs_by_index() (omnibus.postprocess.field.Field method),

151

190 Index
CASL-U-2015-0079-000


	Exnihilo Users.pdf
	I Overview
	Introduction
	Package structure
	Development team

	Exnihilo Quick Start Quide
	Building the developer documentation
	Assembling the source code
	Building the code

	Software Testing and Verification

	II Developer Guide
	Introduction
	Configuration Management
	Getting the code
	Compilers and platforms
	Installation toolchain
	Third party libraries

	Exnihilo Installation Guide
	Installation environment setup
	Install
	Build steps
	The install.sh script

	Workflows
	Configuration workflows
	Design and implementation workflows
	Deployment workflow
	Reviews

	Coding Standards
	Organizing and writing code
	Use of language features
	Things to avoid
	C++11 usage

	Testing
	C++ unit tests
	Python unit tests

	Development Environment
	Setting up the Exnihilo development environment
	Command line tools
	Text editor environments

	Useful tools
	Git
	Git annex
	iPython notebook


	III User Guide: Omnibus
	Front End Interface
	Running Omnibus
	Omnibus input and output files
	Running Omnibus manually
	Command line tools
	Advanced execution through Python
	Parameter list explanation
	Developer notes

	Omnibus ASCII Input Format
	Blocks
	Cards
	Other features

	Omnibus Input Database Specification
	Omnibus input file
	[PROBLEM]
	[RESPONSE]
	[RESPONSE=histogram]
	[RESPONSE=interpolated]
	[TALLY]
	[SOURCE]
	[SOURCE=separable]
	[SOURCE=fissionmesh]
	[SOURCE=mesh]
	[GEOMETRY]
	[GEOMETRY=mcnp]
	[GEOMETRY=scale]
	[GEOMETRY=rtk]
	[GEOMETRY=mesh]
	[COMP]
	[PHYSICS]
	[PHYSICS=mg]
	[PHYSICS=sce]
	[PHYSICS=smg]
	[DEPLETION]
	[SHIFT]
	[DENOVO]
	[MANUALWW]
	[RUN]
	[RUN=serial]
	[RUN=mpi]
	[RUN=pbs]

	Postprocessing
	Cylindrical tally postprocessing

	omnibus.converters package
	omnibus.converters.mctal module
	omnibus.converters.meshtal module
	omnibus.converters.monaco module
	omnibus.converters.opus module
	omnibus.converters.triton module
	omnibus.converters.vesta module
	Module contents

	omnibus.postprocess package
	Submodules
	omnibus.postprocess.celltally module
	omnibus.postprocess.collisions module
	omnibus.postprocess.compositions module
	omnibus.postprocess.cyltally module
	omnibus.postprocess.depletion module
	omnibus.postprocess.field module
	omnibus.postprocess.manager module
	omnibus.postprocess.meshtally module
	omnibus.postprocess.rst module
	omnibus.postprocess.sensitivity module
	omnibus.postprocess.tally module
	omnibus.postprocess.tally_plotter module
	omnibus.postprocess.utils module
	Module contents


	IV User Guide: Insilico
	Introduction

	V Appendices
	Shift Acceptance Test Descriptions
	Leakage test
	Transmission tests
	Material scaling test

	Denovo Acceptance Test Descriptions
	Adjoint SN transport test
	Deterministic first-collision test
	Symmetry test
	Two-dimensional transport test
	AMPX plotting test

	Style Guide
	Code/Package/Library name capitalization
	Commonly used abbreviations/acronyms
	Commonly Used Terminology

	License Information
	Trilinos
	Google Test

	Acknowledgments
	Copyright

	Python Module Index
	Index





